
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Number 1, 2014

SYN!BAD: A SYNONYM-BASED REGULAR EXPRESSION

EXTENSION FOR KNOWLEDGE EXTRACTION TASKS

OVIDIU ŞERBAN

Abstract. This paper focuses on presenting Syn!bad, a synonym-based
regular expression language which can be used for basic Knowledge Extrac-
tion tasks, such as the Natural Language Understanding components for
Dialogue Management. The language offers a simple syntax for complex
matching processes, which brings a new solution for the input variability
problem, often encountered when dealing with natural language. The lan-
guage provides various special tokens to match synonym-based expressions
free context variables and generic Part of Speech tokens.

1. Introduction

In the field of Natural Language Processing (NLP), manipulating data
patterns has been a very successful approach. These patterns are the key
to “understanding” the natural language, by grouping similar elements by
their functionality. The evolution of automata theory leads to a new language
to represent these patterns: the Regular Expressions [16]. There are many
standards for Regular Expressions, leading to various implementations [7].
We will focus our discussion on the basic (BRE) and extended (ERE) features
of Regular Expressions, because of their frequent usage.

From the task oriented algorithms perspective, regular expressions are
very popular in NLP systems, either used alone or in preprocessing tasks for
mixed approaches. Most of the sentence tokenization algorithms are based
on regular expressions [8, 2]. Moreover, more complex tasks, such as Part-
of-Speech Tagging (POS) [13] or Named Entity Recognition (NER) [10] use
them as well. Recently, regular expressions are employed to process emoticons
[11] for Sentiment Analysis Applications. In general, regular expressions are
used in applications where robust but simple algorithms need to be employed

Received by the editors: December 1, 2013.
2010 Mathematics Subject Classification. 68T35, 68T50.
1998 CR Categories and Descriptors. H.5.2 [Information Interfaces and Presenta-

tion]: User Interfaces – Natural Language; F.1.1 [Computation by Abstract Devices]:
Models of Computation – Automata.

Key words and phrases. Knowledge Extraction, Dialogue Systems, Regular Expressions.

5

6 OVIDIU ŞERBAN

as part of a preprocessing strategy [5]. From the application perspective, the
regular expressions have been used successfully in spam detection and filtering
[3] or more generic data mining techniques [17].

Syn!bad is an extended regular expression language, for usage mainly in
Natural Language Processing (NLP) applications. It uses the extended POSIX
Regular Expression [1] structures among others, more specific to NLP domain.
Sometimes, the learning phase for the detection algorithms requires a feature
extraction method. The knowledge extraction methods, involved in the Nat-
ural Language Understanding Process, use similar techniques to detect key
concepts to be used in the Dialogue Management process. We propose this
language to simplify the construction of these patterns.

The name, Syn!bad (also written: Synnbad, with double nn, instead of
n!) is an acronym of Synonyms [are] not bad. This suggests that the main
concepts of Syn!bad are centred among synonyms processing, using different
dictionaries.

Synonyms are independent structures, grouped in different sets, by their
meaning. The most common grouping currently known is the WordNet1

synsets [9], which consists in grouping different words according to their se-
mantics and part of speech. The basic unit, a synset (a set of synonymous
words which refer to a common semantic concept), has a unique id, which
permits an easy retrieval.

Syn!bad is available both as an independent library and as a component
of the AgentSlang platform [14]. Nevertheless, Syn!bad is intended to be a
platform and language independent library that can be implemented and dis-
tributed on its own. We present the language in the scope of basic knowledge
extraction for Interactive Systems (IS), but this library can be extended to
document classification, summarisation, topic extraction, etc.

In dialogue management, knowledge extraction or affect detection, build-
ing a set of patterns to extract the information simplifies the complexity of
any system. Moreover, it gives a tool set flexible enough to process any data.
Appendix A provides a formal view over the language, by presenting the BNF
Grammar definition of Syn!bad .

This article is organized as following: we start with a brief presentation of
our context, related to the Interactive System domain. We continue with the
description of the system, which includes several implementation details. At
last, we conclude with a discussion about the current paper.

1WordNet is a commonly known lexical database for English language.

SYN!BAD 7

2. Context of the problem

In the field of Interactive Systems (IS), the knowledge extraction process
is usually slowed down by the complexity of the rules describing a certain
concept. Using regular expressions is an alternative, but in certain situations,
composing rules for all the cases is impossible. Another approach is to group
certain structures while making them more generic. For instance, instead of
using a regular expression for matching the following sentence: Bob can I have

your phone, one could use <name> can I <verb> your <object>. By using
regular expressions, the variable structures are already supported by certain
implementations.

When adding restrictions to the matched variables the problem becomes
more difficult, especially in the case of <verb> and <object>. To our knowl-
edge, the syntax of matching only variable structures while having a certain
part of speech is not supported by any regular expression implementation.

A more complex situation is given by placing a synonymic relation restric-
tion on the matched item. In our previous example, we would like to extract
only the objects being synonyms of the word phone. The synonyms usually
introduce a certain fuzziness into a decision, since not all the meanings of a
polysemantic word match the context of a given pattern. In this scenario,
a certain restriction can be modelled, by adding a part of speech restriction
on the word. For example, the word phone has multiple meanings, such as
the action of calling someone, when employed as a verb or telephone (object),
when used as a noun. When matching a synonym of telephone with our rule,
we can restrict this to only nouns, in which case the words call or ring, as
verbs, are not matched.

Another situation is dealing with variable concepts, restricted or not by
a certain format. Given the following phrase: 1000$ for a phone ???, we
observe that the amount and the target object may be variable but also a very
important parameter involved in the decision process. Nevertheless, several
restrictions can be added for the amount and the object. For example, the
amount clearly needs to be a number, which can be an annotation done previ-
ous to the decision and the object can be either a generic object or a synonym
of the word “phone”. In the end, for all our examples, the style and format of
the pattern are decided by a human coder.

3. Preliminaries

The ERE, as an extension of BRE, introduces several basic operators:

• The simple terminal matching operator, which can be a character or
a sequence of characters: aabbac, [a-z]bce[0-9]. In these examples,

8 OVIDIU ŞERBAN

the matching process is successful if the sample matches either the ex-
act sequence aabbac or it starts with any low-case character, continues
with the bce sequence and ends with a digit, for the case of the next
sequence.
• The alternative operator (| which is synonym with the or keyword):
seq1|seq2. The matching process is successful if any of the sequences
1 or 2 is matched.
• The zero or one time operator (?), which describes an optional token.
• The zero or many times operator (*), which allows the token multipli-

cation during the matching process.

Several other operators are either specific to character sequence matching
(^ - for the negation of character interval) or are equivalent to a combination
of multiple operators: seq+ ⇐⇒ seqseq*.

In our previous examples, we used the synonyms of the word phone. In
fact, a very popular structure for describing the synonym grouping is given
by synsets (Synonym Sets), as the core part of WordNet [9]. These synsets
consist in a group of synonym words, which have been annotated according to
their Part of Speech (POS) and have a gloss attached to describe their mean-
ing. For an ease of use in Computer Science applications, these synsets have
a unique alphanumeric index attached. The following example is the synset
of the word phone:

04401088: (n) telephone, phone, telephone set (electronic equipment that con-
verts sound into electrical signals that can be transmitted over distances and
then converts received signals back into sounds)

where 04401088 is the synset identification number, (n) states that this synset
contains nouns, followed by the synonym list and the last part is the gloss.
Usually, the synset id is represented as a combination between the part of
speech and the identification number, becoming in this case n#04401088 or
simply 04401088n.

Another important concept used in our work is the Part of Speech (POS)
tag, which corresponds to the lexical class of each word. The process of an-
notating a word with its specific tag is usually called Part-of-Speech Tagging
and it cannot be done on an independent word, but on a whole phrase or
context. Various annotation models exist, each depending on one or multiple
POS Tag sets, which are usually language dependent, since not all the lan-
guages have the same lexical classes. For English, one of the most popular
Tag Set available is the Penn Part-Of-Speech Tag System [12]. For French
one of the most common used tag set is the TreeTagger Part-of-Speech Tags

SYN!BAD 9

[15], while for Central and East European languages (including Romanian)
the MULTEXT-East [6] is frequently used. For the purpose of this article, we
will focus our examples on the Penn POS Tag Set, with the observation that
our proposition is intended to be language independent.

We continue this paper with a simple practical example of Syn!bad syntax,
which will allow us to introduce all the concepts of the proposed language.

4. The Syn!bad Extension

4.1. A practical example. Given the previous context, we propose a first
example of a Syn!bad pattern.

s4

s1 s2* s3# do s5you

s6

<VB>

s4 [some|RB][water]

s4

s7

<VB>

Figure 1. A Syn!bad example, presented as an automaton

Based on the rules described above, we compile the following Syn!bad
pattern, which also contains most of the features of the language:

$name <#*>? do you <VB*>* [some|RB*] [water#object]

• $name item represents a context free variable, which matches any single
word and retrieve it as the name variable.
• <#*>? is an optional token that can match any punctuation mark.

Moreover, the #* represents a generic part of speech group matching
punctuation marks.
• do and you are precise words matched by this expression.
• <VB*>* is a none-or-many token matcher, which restricts the element

to match only a selected part of speech, in this case a verb.
• [some|RB*] represents a matcher for a synonym of the word some.

Moreover, a restriction over the part of speech is added, which matches
only adverbs.
• [water#object] this token is similar to the previous one, but a syn-

onym of the word water is matched and the word is stored into the
object variable.

In order to describe the whole matching process, the following sentence is
given: Ovidiu , do you want any aqua

10 OVIDIU ŞERBAN

The result of the matching is: $name ← Ovidiu and #object ← aqua,
while <#*>? matches the comma mark (,), <VB*>* matches the single verb
want and any is matched by the token [any|RB*].

4.2. Implementation Details. The Syn!bad language has two levels, one is
related to the grammar model, presented in the Appendix A. The second level
concerns the implementation of this language, as an extension to the current
capabilities of our knowledge extraction platform.

The patterns are compiled into a Deterministic Finite Automaton (DFA),
completely written from scratch in Java language. We choose this representa-
tion since the DFA offers superior matching speed for a linear decision. Cox
[4] presents a series of experimental arguments to sustain our choice.

The Deterministic Finite Automaton (DFA) is a type of automaton, where
each state, for a given input, has at most one new state leading from the
previous one. This makes the navigation through the states easier, since the
possibility of exploration is always reduced to only one state or none. The
finite status is given when our machine reaches one of the terminal states and
the finish condition is fulfilled.

The simple token matchers use a simple word equality operator, whereas
the others require more complex operators, such as part of speech matchers
and synonym intersection.

Concerning the part of speech restrictions, we propose two different types
of labels. One is more strict, as recommended by the Penn Part-Of-Speech
Tag System [12], which contains 45 different labels. The second is a functional
grouping of the first system, called Generic POS, and contains only 5 labels:

(1) #* groups all the punctuation marks into one single category: $ # .

, : () " ’

(2) VB* groups all the verb tags: VB, VBD, VBG, VBN, VBP, VBZ

(3) RB* groups all the adverb tags: RB, RBR, RBS

(4) NN* groups all the noun tags: NN, NNS, NNP, NNPS

(5) JJ* groups all the adjective tags: JJ, JJR, JJS

The synonyms are currently extracted from the WordNet dictionary [9].
We use the synset identifiers, provided by WordNet, restricted by Part of
Speech, when necessary. WordNet provides an index already split by part-of-
speech, which makes the restriction conditions much easier to fulfil.

All the part-of-speech restrictions, synonyms and variable names are stored
as a matching token, making possible to model our automaton as a DFA. All
the tokens of a pattern are stored as a linked multi-list.

For each state, we assign a priority to each token, which makes the matcher
decision even more simple. The top priority is assigned to the optional token,

SYN!BAD 11

just before the mandatory element. This is done because it is more impor-
tant to match an optional item, when possible, rather than a mandatory one.
The process cannot continue without matching all the mandatory elements,
therefore since the optional item can be skipped easily, it is important to
match them before the mandatory items. The last priority is assigned to a
consumer item, which is either a skip item or a global variable (a structure
labelled $name). A skip is an element with the lowest priority assigned, which
matches everything and it is used to define matching spaces. The current
implementation uses a skip of 2 items defined by default.

Once the patterns are compiled, each one of them has an identifier as-
signed. These are not mandatory to be unique, and in certain situations
it can be useful to have duplicate identifiers, such as in the case of having
polysemic expressions. For instance, the patterns: (hello) and (hi there),
can have the same id (id=greeting), since both represent different forms of
greetings.

When a pattern is matched, its identifier is returned, along with all the
variables matched. The variables could be global: defined as $name, or lo-
cal: #name which are defined by the part-of-speech or synonym matching to-
kens. For instance, the pattern (hello $name) matches the first word that
comes after hello and stores it in the $name variable, whereas the pattern
hello <NN*#name>* matches the first noun that follows the word hello and
stores it in the variable #name. In fact, the $name variable is matching any
word or punctuation mark, whereas #name variable stores the content matched
by a specific token: part-of-speech or synonym.

4.3. Syn!bad Pattern Styles. Patterns, among the variable retrieval fea-
ture, have another level of static labels, named styles. A style is represented
by a collection of pairs (label, value) assigned to each pattern. The functional
value of this feature is represented by the possibility to manually assign a sec-
ond level of annotation to a certain matcher. The label space is defined on the
whole matcher container (all the pattern matchers added on the same list),
and the label space is sparse, as well. When a matcher does not have a label
defined, an ’*’ is automatically assigned to any undefined value.

To introduce the styles, we present a short example of this functional-
ity. Table 1 defines three different patterns, each one having different styles
assigned. Styles are comma separated, defined as a label=value pair.

The pattern p1 has two values assigned to the styles relation=familiar
and rudeness=high, p2 defines a value just for rudeness=low therefore the
relation becomes *, p3 has the polite value assigned to the relation. Table 2
summarises these results.

12 OVIDIU ŞERBAN

Pattern ID Style

what do you want ? p1 relation=familiar,
rudeness=high

what can i do to help you ? p2 rudeness=low

if i may ask , how could i help you ? p3 relation=polite

Table 1. Syn!bad pattern examples, using the style definition features

Style
ID

p1 p2 p3

relation familiar * polite

rudeness high low *

Table 2. The values assigned to each style according to the
pattern definitions from Table 1

In another context, the styles could be used for other applications, such
as sentiment detection. Given the following patters, presented in Table 3,
we could observe that the pattern p1 and p2 are annotated with negative or
positive labels, while p3 is neutral, therefore no sentiment will be associated.
During the matching process, the style for p3 will be equal to *.

Pattern ID Style

This $object is broken ! p1 sentiment=negative

This $object is very good ! p2 sentiment=positive

This is a $object ! p3

Table 3. Sentiment annotation used as Syn!bad styles

The usage of styles is not mandatory, but offers another level of granularity
for the knowledge extraction model. The styles offer a complementary function
for variable extraction and in case of large pattern databases, it also provides
more information for the dialogue selection models and dialogue generation
components.

SYN!BAD 13

5. Conclusion

Syn!bad is an extension to the POSIX regular expression language that
employs special elements useful for NLP applications. These elements are
synonymic or part-of-speech expressions that can be combined with regular
word items. The patterns can be grouped into semantic clusters and have
various styles assigned, which makes the matching process useful for knowledge
extraction and dialogue management. In fact, this language is a critical part of
the AgentSlang Platform [14], ensuring the Natural Language Understanding
function of the system.

Appendix A. Syn!bad: BNF Language Specification

The BNF Grammar of the Syn!bad syntax is defined as following:

〈expression〉 ::= 〈token〉 ‘ ’ 〈expression〉 | 〈token〉

〈token〉 ::= 〈pattern〉
| 〈pattern〉 ‘*’
| 〈pattern〉 ‘?’
| 〈pattern〉 ‘{’ 〈number〉 ‘,’ 〈number〉 ‘}’

〈pattern〉 ::= 〈word〉
| ’<’ 〈POS Structure〉 ’>’
| ‘[’ 〈synonym〉 ‘]’
| ‘$’ 〈variable〉

〈POS Structure〉 ::= 〈POS 〉 (‘#’ 〈variable〉)?

〈POS 〉 ::= 〈PennPOS 〉
| 〈GenericPOS 〉

〈synonym〉 ::= 〈word〉 (‘|’ 〈POS 〉)? (‘#’ 〈variable〉)?

〈number〉 ::= [1-9] [0-9]*

〈word〉 ::= [a-z]+

14 OVIDIU ŞERBAN

〈variable〉 ::= [a-z0-9]+

〈PennPOS 〉 ::= ‘JJ’ | ‘RB’ | ‘DT’ | ‘TO’ | ‘RP’ | ‘RBR’ | ‘RBS’ | ‘LS’
| ‘JJS’ | ‘JJR’ | ‘FW’ | ‘NN’ | ‘NNPS’ | ‘VBN’ | ‘VB’ | ‘VBP’
| ‘PDT’ | ‘WP$’ | ‘PRP’ | ‘MD’ | ‘SYM’ | ‘WDT’ | ‘VBZ’ | ‘¨’
| ‘#’ | ‘WP’ | ‘’’ | ‘IN’ | ‘$’ | ‘VBG’ | ‘EX’ | ‘POS’ | ‘(’
| ‘VBD’ | ‘)’ | ‘.’ | ‘,’ | ‘UH’ | ‘NNS’ | ‘CC’ | ‘CD’ | ‘NNP’
| ‘PP$’ | ‘:’ | ‘WRB’

〈GenericPOS 〉 ::= ‘#*’ | ‘VB*’ | ‘RB*’ | ‘NN*’ | ‘JJ*’

References

[1] V. Alfred. Algorithms for finding patterns in strings. Handbook of Theoretical Computer
Science: Algorithms and complexity, pages 255 – 300, 1990.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python.
O’Reilly Media, 2009.

[3] Eric Conrad. Detecting spam with genetic regular expressions. SANS Institute InfoSec
Reading Room, 2007.

[4] R. Cox. Regular expression matching can be simple and fast (but is slow in java, perl,
php, python, ruby, ...). http://swtch.com/~rsc/regexp/regexp1.html, January 2007.

[5] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj
Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica Daml-
janovic, Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann Petrak, Yaoyong
Li, and Wim Peters. Text Processing with GATE (Version 6). 2011.

[6] Tomaž Erjavec. Multext-east: morphosyntactic resources for central and eastern euro-
pean languages. Language resources and evaluation, 46(1):131–142, 2012.

[7] Information technology – Portable Operating System Interface (POSIX R©) Base Speci-
fications, Issue 7. ISO/IEC/IEEE 9945:2009, September 2009.

[8] Christopher Manning, Tim Grow, Teg Grenager, Jenny Finkel, and John Bauer. Stan-
ford tokenizer. http://nlp.stanford.edu/software/tokenizer.shtml, 2010.

[9] G.A. Miller. WordNet: a lexical database for English. Communications of the ACM,
38(11):39–41, 1995.

[10] Diego Mollá, Menno Van Zaanen, and Daniel Smith. Named entity recognition for ques-
tion answering. Proceedings of ALTW, pages 51–58, 2006.

[11] Christopher Potts. A Twitter-aware Tokenizer from the Sentiment Symposium Tutorial.
http://sentiment.christopherpotts.net/, November 2011.

[12] B. Santorini. Part-of-speech tagging guidelines for the penn treebank project (3rd revi-
sion). Technical report, University of Pennsylvania, 1990.

[13] Helmut Schmid. Improvements in part-of-speech tagging with an application to german.
In In Proceedings of the ACL SIGDAT-Workshop. Citeseer, 1995.

SYN!BAD 15

[14] Ovidiu Serban and Alexandre Pauchet. Agentslang: A fast and reliable platform for
distributed interactive systems. In Intelligent Computer Communication and Processing
(ICCP), 2013 IEEE International Conference on, pages 35–42. IEEE, 2013.

[15] Achim Stein. French TreeTagger Part-of-Speech Tags. http://www.cis.uni-muenchen.
de/~schmid/tools/TreeTagger/data/french-tagset.html, April 2003.

[16] C. Kleene Stephen. Representation of events in nerve nets and finite automata. Au-
tomata Studies, pages 3 – 41, 1956.

[17] Daniela Xhemali, Chris J Hinde, and Roger G Stone. Genetic evolution of regular
expressions for the automated extraction of course names from the web. In GEM, pages
118–124, 2010.

LITIS Laboratory, INSA de Rouen, Avenue de l’Université – BP 8, Saint-

Étienne-du-Rouvray Cedex, 76801 France
E-mail address: ovidiu.serban@insa-rouen.fr

