
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 4, 2013

PERFORMANCE AND RELIABILITY IN THE

DEVELOPMENT OF A DECORATOR BASED

COLLECTIONS FRAMEWORK

V. NICULESCU

Abstract. The paper presents some problems and their corresponding
solutions encountered during the implementation process of a framework
for collections defined based on features. The design is extensively based on
the Decorator pattern in order to allow dynamic composition of the features
that characterize a data structure. The Decorator pattern is combined with
other patterns such as: Proxy and Template Method. The presentation
is ruled by the different categories of features that could be added to a
collection. Issues related to performance and efficiency are analyzed for
each category of features.

1. Introduction

In the paper “A Decorator based Design for Collections” [5] a new design
for a framework for collection data structures has been proposed.

The design is directed by the reason of creating a framework easy to use
and extend. The main idea a of the framework is the following:

Anytime a feature could be added to a collection and then could be removed.
We considered a feature as being a distinctive property that characterizes

the behavior of a collection – an operation or a set of operations with defined
arguments, together with their semantic expressed by a clear specification. It
is something that fundamentally characterizes the collection behavior [5, 4].

The design is based on the Decorator pattern [1], in order to allow dynamic
composition of the features that characterize a data structure. The Decorator
pattern is combined with Proxy pattern [1], since the features could be easily
implemented by adding prefix and suffix operations that precede and succeed

Received by the editors: September 20, 2013.
2000 Mathematics Subject Classification. 68P05.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; E.2 [Data]: Data

Storage Representation .
Key words and phrases. data structures, collections frameworks, genericity,

representation.

87

88 V. NICULESCU

the initial operations. Also, Template Method pattern [1] is useful for imple-
menting and using these operations. The design introduces an order in using
the collections, but also in developing new extensions. This is achieved while
the scalability is preserved.

In order to validate the emphasized advantages of this design approach,
concrete implementation is needed. This paper presents the problems and
their solutions, which occurred during the first iteration of the implementation
process (the implementation is done in Java language). Section 2. reviews the
proposed design, the following three sections present the problems encountered
during the implementation process, and how their solving was directed by the
performanace and reliability desiderates. The last section presents conclusions
and further possible improvements that could be considered.

2. The design review

The design makes a clear distinction between Storage Capability and Spe-
cialized Behavior of each collection type [5, 3, 2].

For a collection, the storage is set by using a fundamental data structure,
and the behavior is determined by the added features.

The implicit properties of each collection type are following:

• memory representation,
• iterability, and
• searchability

The interface IStorage, which extends Iterable interface, defines this con-
tract.

In order to create a new kind of containers a linear combination of features
can be used. Each feature is wrapped around the previous feature, or storage
(storages could be seen as basic features).

Some of these features are symmetric – could be combined in any or-
der without changing the result. Examples of this type are: Unique and
DeepOwnership.

In Table 1 the considered features are presented.

Level Features Symmetry
4 Ranked, Stack, Queue, PriorityOueue, Map, DMap, OMap no
3 Synchronized,Unmodifiable no
2 Unique, FlagDeletion, DeepOwnership, Searchable yes
1 Sequence, SortedSequence, Heap, BSTree, Hashing no
0 all the storages types no

Table 1. Features and their level based classification.

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 89

Figure 1. Storages classes: a subset.

Features like Stack, Queues or PriorityQueue have all in common the fact
that they use a special rule (LIFO, FIFO, etc.) in order to extract the ele-
ments from their storage. They are specializations of a more general feature
RuleBasedExtraction. Also, there are other similar features – we may call them
hidden – which are not used directly by the user, but their role is to denote a
common behavior of others; other examples: Comparison, EmptyStorage.

3. The Base of the Implementation

3.1. References and Iterators. Linked memory allocation implies the pos-
sibility to create different, sometimes complicated, structures, and so it is used
by several categories of storages – linear lists, trees, etc. The linked memory
representation is based on working with references, and in order to obtain
a correct level of genericity (which has to be high), the implementation was
based on an abstraction IReference that corresponds to the logical definition
of a reference:

Definition 1 (Reference). A reference is considered to be any value that
could be used in order to obtain another value. Examples of references are:
memory addresses (pointers), indices in a table, linked nodes, etc.

public interface IReference<T>{
T getInf();

void setInf(T e);

90 V. NICULESCU

Figure 2. References and different iterator types.

}

This definition of references allows us to treat uniformly all the funda-
mental structures with linked representation: lists singly and doubly linked,
trees, etc. The common behavior of linked structures is extracted into the
class LinkedStorage<T.

In order to assure the compatibility of the framework with JFC collec-
tions, the basic Java interfaces from the package java.util: Iterator and
Iterable are used. The class Storage implements Iterable interface, and all
the iterators implements Iterator interface.

An important difference is given by the fact that, in the context of this
framework, iterators are also references, since they correspond to the reference
definition.The linked storages are based internally on Nodes classes which also
implement IReference; but the linked storages interfaces use only IReference

type. In this way, nodes and iterators could be both used instead of references
– depending on the context.

Because of this, the interface RWIterator (which is implemented by all iter-
ators in the framework) extends the both interfaces Iterator from java.util

package, and IReference.
A bidirectional, reading and writing iterator is defined through the in-

terface RWBIterator, and this defines operations such as insert and moving
forward and backward.

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 91

In order to simplify the implementation of new concrete iterators, corre-
sponding abstract classes RWIteratorA, RWBIteratorA offer partial implemen-
tations of the iterators contracts.

3.2. Specialized Containers as Decorators. The specializations of the
containers are defined as Decorators, and the root decorator class is
SpecializedContainer<T> that extends Storage<T>, but which also uses a stor-
age of type Storage<T>. Each feature will be introduced as a decoration of the
storage.

This class defines template methods for each independent methods of the
class Storage<T>. These methods call the proxy methods that precede and
succeed the calls of the Storage<T> methods.

For example the definition of the method add inside the class
SpecializedContainer<T> is as follows:

public IReference<T> add(T e){
// template method:

e = prev_add(e); // previous action before support.add operation

IReference<T> real_add = null;

if (e != null)

real_add = support.add(e); //the add operation on the support

e = post_add(e); //// successive action after support.add operation

return real_add;

}

In this way it is assured that if the element has been added, then a not null
reference on the added element is return; usually this reference is of iterator
type.

When we define a container with several decorations, the proxy methods
of each decoration is called in a chain. It is possible to define a container as
follows:

Storage<Integer> s =

new Deco1<Integer>(new Deco2<Integer>(new Array<Integer>())));

If we want to add an integer (for example the value 4) we have:

s.add(4);

In order to define a set we have to assure the fact that no duplicates are
included into the container. Unique defines a decoration that assures this fact.
This could be easily implemented using these proxy methods, more precisely
by defining the method prev add as follows:

public T prev_add(T e) {
Iterator<T> it = search(e);

if (it==null) return e; //the element was not found so it could be added

92 V. NICULESCU

return null;

}

A container could be modified not only directly by sending corresponding
methods to it, but also through an iterator built over it. Because of this the
proxy methods have to be used by the iterator operations, too.

An iterator of type RWIterator has the methods remove, and setInf that
modify the iterated container. For changing the current element, the proxy
methods used for adding could be used. In order to assure that the proxy
methods are called, TemplateMethod design pattern is used. The abstract
class RWIteratorA defines the template methods, and all concrete iterators of
the concrete storages extend this class. For a bidirectional iterator, the method
insert uses a similar solution based on the abstract class RWBIteratorA.

4. Performance and reliability when adding a new decoration

When we are implementing some features, it is possible to improve the
efficiency by working directly on the base support storage.
For example Ranked extends the common container interface with the following
methods:

• int getRank(T e)

• T getElem(int index)

• void setElem(T e, int index)

• T remove(int index)

The rank of an element is equal to its rank in the list that results by
iterating the container. For a basic storage of type Array these operations
are very fast (time-complexity equals to (O(1))), since we have direct access
based on the index. If we base our implementation on iterators the resulted
time-complexity is linear.

In order to obtain a good performance we have to use the specific meth-
ods from Array class if the base support is of this type. Using a method
getBaseSupport() of the class SpecializedContainer we may obtain the basic
support and verify its type. Also, using a similar approach we may obtain the
list of all existing decorations.

The solution seems to be very simple, but it has an important problem.
By extracting the base support we eliminate the features that decorates our
container, and so the proxy methods prev add, post add, etc. of all the elim-
inated features will not be called.

We may solve this by storing the list of all features that were removed
when the base support was extracted.

Based on this list we may directly call all the proxy operations.
In order to simplify and to collect this behavior, a new decoration class

is defined FeaturesStorage. This memorizes a list of features, and redefines

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 93

the proxy operations. For example, the method prev add is overridden as
following:

public T prev_add(T e){
return direct_call_prev_add(e,features_list);

}
protected T direct_call_prev_add(T e, Array<Storage<T>> features_list){

for(Storage<T> s: features_list)

e = s.prev_add(e);

return e;

}

For successive proxy methods (post) the calls are done in reverse order.
Remarks

• The class FeaturesStorage could induce the impression that the infras-
tructure based on Decorator pattern is not necessary since we may just
define a list of desired features and then create the corresponding kind
of storage. The infrastructure based on Decorator pattern is important
in order to achieve the proposed flexibility that allows features to be
dynamically added or removed.

• “What if the FeaturesStorage is created twice for the same container?”
Such a thing could happen when a certain feature is searched for (e.g.
Sequence). In this case we have to take care if there is a decoration
of type FeatureStorage, and to search inside this decoration, too. The
problem could be solved by defining a union operation over the in-
stances of the class FeatureStorage.

• If the order in which the decorations are added is appropriate, then in
many cases FeatureStorage is not necessary.

• “What if the decoration that has produced a FeatureStorage instance
is removed?” The method removeDecoration() that eliminates the top
decoration is responsible to restore the collection state at the its state
before the decoration has been added. This could be easily achieved
by overriding the method correspondingly in each decoration class.

5. Sequences

The interface ISequence characterizes a sequence; it specifies that there is
a first element, a last element, and also, that a reading, writing, bidirectional
iterator could be created on a sequence; the bidirectional iterator respects the
order of the elements of the sequence, and assures that, for each element, we
may obtain the previous and successive elements if they exist.

If the base support is a storage of type ISequence then the Sequence feature
could be added; otherwise an exception is thrown. The base sequence seq is

94 V. NICULESCU

extracted and all the methods that characterize a sequence are sent to this
object seq. As for the Ranked feature case, the same problem related to the
eliminated features appears. The solution is based again on direct calls of the
proxy methods, by using an instance of type FeaturesStorage.

Still, there is another problem related to the bidirectional iterator. The
returned iterator is the iterator on the base sequence. The iterator works
directly on the base sequence, and so no proxy operations are called when
remove, insert or setInf operations of the iterator are called. This could be
solved by creating a proxy iterator that adds and uses a list of features when
redefines the methods.

The proxy class is FRWIteratorA<T>, which extends the class RWIteratorA<T>;
a simple iterator it of type RWBIteratorA<T> is wrapped inside and all the meth-
ods are redefined. For example, the implementation of the method setInf of
the iterator is as follows:

public void setInf(T e){
e = fs.prev_add(e);

if (e != null)

it.set_o(e);

fs.post_add(e);

return ;

}

(fs stores the FeaturesStorage object that stores all the extracted features.)
Sequence feature is important since other decorations as Stack and Queue

are based on it. The stacks and queues are sequences with special input/output
principles.

5.1. Stacks and Queues. These kinds of structures are sequences with spe-
cial input/output principles, and so the derivation of their corresponding
classes is done from Sequence class.

The interface IRuleBasedExtraction specifies two operations:

-: extract():T
-: toBeExtracted():T

There are several possible rules that could be used for defining the next
element to be extracted:

-: LIFO - Last In First Out – used by the stacks;
-: FIFO -First In First Out – used by the queues;
-: the element with greatest predefined priority – used by the priority

queues.

Performance issue: For stacks, we may improve the performance by
transforming the sequence into a reverse sequence, if necessary. A reversed

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 95

sequence is obtained from a sequence by changing the order of the elements:
the first becomes the last, the last becomes the first, and all the other elements
are reversed. If the base storage is Array then it is more efficient to add and
extract the elements to/from the end; if the base storage is a LinkedList then
it is more efficient to add and extract elements in the front of the list.

The priority queue decoration could add an intermediate Heap decoration.
Reliability issue: Since for the stacks and queues we have special in-

put/output principles it is necessary to modify their content only through
add and extract operations. In order to assure this, the method post iter()

transform the iterator over this kind of structures into an iterator of the type
SimplifiedIterator (which is only a reading iterator). Also, classical con-
tainer operations such as remove and search are excluded by defining the
appropriate prefix proxy operations (proxy operations for these always return
null).

6. Collections with Comparable elements

The storages that stores comparable elements have to define a compar-
ison method. This comparison method is either based on Comparable inter-
face, or on a Comparator instance (from java.util). This behavior is de-
fined as a decoration implemented in the class Comparison. This class stores
a Comparator member – comp (implicitly initialized with null), and defines a
protected method compare that uses the comparator - if such comparator is
defined, or uses the natural order defined based on Comparable interface.

6.1. Sorted Sequences. The sorted sequence decoration specializes Comparison
decoration. First action that is induced by this decoration is to add implicitly
a decoration of type Sequence over the support storage (if this is not already
present).

For adding a new element in this kind of storage, the insert method of a
bidirectional iterator is used. Using the iterator, we find the correct position
of the new element, and then the element is inserted correspondingly.

In order to assure that the correct order of the elements, could not be
affected, the iterator created on this kind of storage is a SimplifiedIterator

that is only a reading iterator.

6.2. Searchable Collections. As we have mentioned in the Section 2 we
decorate a collection with Searchable decoration when we need a searching
operation with a time-complexity better than the implicit linear one (obtained
using iterators).

Searchable decoration class verifies and assures (by adaptation if it is the
case) that the existing storage is an efficiently searchable one.

96 V. NICULESCU

There are several possible cases:

• If there is one of the following decorations: BSTree<T> or Hashing<T>,
then the storage is searchable, and nothing else should be done.

• If the base storage has the type Array<T> and if it has a decoration
of type SortedSequence<T> then a binary search algorithm could be
defined and used (this is a case for which the search method is over-
ridden).

• If the base storage has the type Array<T>, and it doesn’t have a Comparison

decoration, then Hashing (based on an open addressing hash table im-
plementation) decoration is added, as the innermost decoration.

In conclusion, Searchable decoration could transform, in some cases, the
container, by adding additional decorations. This is an example of self-adaptation
of a collection.

7. Synchronization

In order to solve the synchronized access to a data structures, we have
considered in the definition of the Storage class, an integer field that store the
number of threads that share this container as a common resource. This field
is memorized for all the containers, but the space-complexity is insignificantly
changed.

For a proper synchronized behavior, the decoration done with Synchronized

class is necessary. The proxy methods are used, and they are redefined for each
operation that modifies somehow the container. The prev operations wait for
the monitor, and post operations release it.

A container could be modified also using iterators, but the methods from it-
erator such as remove or insert use the proxy methods pre remove, post remove,
respectively pre add, post add. So, if the synchronization is done using these
methods this means that the modifications through the iterators are also syn-
chronized.

Of course, that if we work with different iterators from different threads
and we modify the container, we could arrive to improper state situations.
For example, one thread deletes an element which is currently pointed by an
iterator from another thread; after the deletion the state of the iterator of
the second thread will be in an improper state. This compromise is accepted
by current implementations of the specialized synchronized variants of the
collections from JCF. The user is responsible for using iterators only inside
complete synchronized blocks - from the beginning of using them to the end.

We have the possibility to force this constraint in our framework by re-
defining the proxy methods for getting iterator: prev iter and post iter, in

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 97

Figure 3. The IMap interface.

the Synchronized decoration class. The method prev iter obtains the synchro-
nized access, and the method post iter transforms the iterator to be returned
into a synchronized iterator. The class SynchronizedIterator is just a simple
wrapper class for RWIterator<T>.

We have also to add a method releaseContainer that releases the container
monitor, when the iterator is not used anymore.

Still, even in this case, it is the user responsibility to call this method, in
order to let other threads to have access to the container.

A possibility to force this release would be to define for this synchronized
iterator class a finalize method that release the container monitor. Still, the
solution is not practical in Java, since the moment of finalization is not known
for an object.

8. Associative collections

The main representative for associative collections are the map or dic-
tionary collections. The interface IMap<X, Y>, where X represents the type
of keys, and Y the type for the values (Figure 3) defines the corresponding
contract.

We could create concrete map classes starting from the SpecializedContainer<T>
in different ways (Figure 4):

(1) to replace the generic type <T> with a MapEntry<X,Y> type, and so
creating containers with elements that represents pairs of keys and
values; the resulted class is Map<X,Y> that extends the class
SpecializedContainer<MapEntry<X,Y>> and implements IMap<X,Y>;

(2) to create a class that aggregates two storages: one for keys of type
T (inherited from the super class), and another for the associated
values of type V; the resulted class is OMap<T,V> that extends the class
SpecializedContainer<T>, and implements IMap<T, V>;

(3) to create a map class with keys of type K and values of type T,
which extends SpecializedContainer<T>, and implements IMap<K,T>.
In this case a class RefElem which extends MapEntry<K, IReference<T>>

98 V. NICULESCU

Figure 4. Classes that implement the IMap interface.

is used; this means that for each key we store a reference to the corre-
sponding value.
class DMap<K, T> extends SpecializedContainer<T> implements IMap<K,T>

If we use the first variant for creating a map, it is required to explicitly use
the type MapEntry (his could be considered as a disadvantage). For example:

Map<Integer, String> mp= new Map<Integer,String>(

new SortedSequence<MapEntry<Integer,String>>(

new Unique<MapEntry<Integer,String>>(

new DynSLinkedList<MapEntry<Integer,String>>()),

new MapComparator<Integer,String>(new IntComparator())));

mp.add(10, ”zece”);

mp.add(8, ”opt”);
If we want to create a sorted map, we should provide a MapComparator<X,Y>

which could be created based on a simple Comparator<X> on the keys type.
The last variant (from the enumerated possible variants) allows us to dec-

orate an existing collection by adding to each element a key, which assures a
fast access to the value. The class DMap aggregates an instance of type Map<K,

IReference<T>> where the keys are stored. This instance could be created us-
ing different storages, but storages based on hash tables or binary search trees
are very advantageous.

The time-complexity of adding operation is obtained as a sum of the time-
complexity of the adding the value in the base support and the time-complexity
of adding the key into the associated support. For the support of the keys it
is important to assure a searchable decoration, and this could lead to a time-
complexity for adding of O(log n). For values, any support is acceptable - so
a time-complexity of O(1) is easy achieved.

The difference between the last two approaches – one based on OMap and
the other based on DMap – could be expressed by the following statement: in

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 99

the first approach the keys are decorated with values, and in the other the
values are decorated with keys.

FlagDeletion feature decorates the storage with OMap, which add boolean
values to each element (which represent the keys). A false value represents
the fact that the element was marked for deletion.

9. Framework usage

As we have specified before, the framework allows the creation of new
collections by specifying in a proper order the characteristic features. We will
give few examples.

Example 1. [Set+Tree]
If the user needs a sorted set collection, with a fast searching method, he/she
may create it with the following statement:

IStorage<Integer> set =

new Unique<Integer>(

new BSTree<Integer>(

new DynLinkedTree<Integer>()));

If after a while a synchronized access it is necessary, the set could be
wrapped as:

set = new Synchronized<Integer>(set);

The synchronized access could be removed by using:

set = ((SpecializedContainer<Integer>)set).removeDecoration();

Example 2. [Features of the highest level]
If the user needs a stack of integers, he/she may create it with the following
statement:

Stack<Integer> stack =

new Stack<Integer>(

new Array<Integer>());

We may notice that the object stack should be declared as having the type
Stack, not as a general IStorage.

If after using the stack for the initial purpose, based on the LIFO principle,
the stack is not empty, the same object could be used as a simple collection:

IStorage<Integer> sup_stack= stack.removeDecoration();

If for elements which have been remained in the collection we would like
to have a direct access based on the rank, we may add Ranked feature:

Ranked<Integer> rank_coll = new Ranked<Integer> (sup_stack);

100 V. NICULESCU

for (int i =0 ; i<rank_coll.size(); i++){
System.out.println(”the next element in the stack”+ rank_coll.getElem(i));

}

10. Conclusions and Further Work

The presented framework is based extensively on the Decorator pattern in
order to allow dynamic composition of the features that characterize a data
structure. In this way we may add or remove a feature dynamically. Also,
Proxy and Template Method design patterns ware used for defining specialized
operation based on their basic variants.

Since is based on a constructive way for defining behaviors, the presented
approach eliminates the need for “Fat Interfaces” that JFC builders used [7].

In order to be useful, a collection framework should not only have a nice
design that could lead theoretically to important advantages, but should also
be efficiently implemented, and issues as performance and reliability should
be treated carefully. The implementation process of the proposed framework
was leaded by these desiderates.

In order to increase the performance, the framework defines some adapta-
tions to be done automatically in certain situations. In this way, it is not only
the responsibility of the user to know, and to combine properly the possible
features.

The implementation problems and their solutions, encountered in this first
stage of the framework implementation, were presented here. Further improve-
ments could be surely introduced, and it is possible to emphasize other possible
automatic adjustments. Further work includes other similar improvements.

For a proper validation, testing activity is very important, too. So, the
next step would treat the problem of testing, which should be based on very
well analyzed and defined set of test-cases. Concrete performance comparisons
with other existing similar frameworks (at least with JFC) are going to be
conducted, in order to have a complete evaluation of the utility of the proposed
framework.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable
Object Oriented Software, Addison-Wesley, 1994.

[2] V. Niculescu, G. Czibula: Fundamental Data Structures and Algorithms. An Object-
Oriented Perspective, Casa Cartii de Stiinta, 2011 (in Romanian).

[3] V. Niculescu,: Storage Independence in Data Structures Implementation, Studia Univer-
sitatis ”Babes-Bolyai”, Informatica, Special Issue, LVI(3), pp. 21-26, 2011.

[4] V. Niculescu, D. Lupsa, R. Lupsa: Issues in Collections Framework Design. Studia Uni-
versitatis ”Babes-Bolyai”, Informatica,Vol. LVII, No. 4 (Dec. 2012), pp. 30-38.

DEVELOPMENT OF A DECORATOR BASED COLLECTIONS FRAMEWORK 101

[5] V. Niculescu, D. Lupsa: A Decorator based Design for Collections. Studia Universitatis
”Babes-Bolyai”, Informatica, Special Issue (Proceedings of the International Conference
on Knowledge Engineering, Principles and Techniques, KEPT2013, Cluj-Napoca (Roma-
nia), July 5-7, 2013), pp 54-64.

[6] Generic Java,http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html
[7] Java.The Collections Framework,http://download.oracle.com/javase/1.5.0/docs/guide/collections/

Department of Computer Science, Babeş-Bolyai University, Kogalniceanu
1, 400084, Cluj-Napoca, Romania

E-mail address: vniculescu@cs.ubbcluj.ro

