
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 4, 2013

SHOTGUN SURGERY DESIGN FLAW DETECTION. A

CASE-STUDY

CAMELIA ŞERBAN

Abstract. Due to the complexity of object oriented design, its assess-
ment becomes a time-consuming activity. Consequently, methods and
techniques are needed in order to assess the design in an automatic manner.
As a result, software metrics represent a solution, a means for quantify-
ing those aspects considered important for the assessment. They measure
different aspects of software and therefore play an important role in un-
derstandig, controlling and improving software quality.

This article presents an experimental evaluation of our proposed frame-
work for object-oriented design (OOD) assessment. To emphasize the rel-
evance of this methodology, a comparison with similar approaches found
in literature is also comprised in our case study.

1. Introduction

Object-oriented systems going through recurrent additions of functionality
commonly suffer a loss of quality in their underlying design [6]. A minor change
in one of its parts may have unpredictable effects over other parts and may
generate possible disasters. Therefore, object-orientation should be basically
flexible and easily adaptable to extending the functionality of a system, with
limited alteration to existing modules [7].

To fulfill this goal, assessment of the software system design should observe
well established design principles and heuristics, and should be continuing
through the entire development life cycle. The evaluation results will further
serve in identifying those design entities that need further investigation and
possible refactorings.

Due to the complexity of object oriented design, its assessment becomes
a time-consuming activity. Consequently, we need methods and techniques to

Received by the editors: October 10, 2013.
2000 Mathematics Subject Classification. 68N30, 68T37.
1998 CR Categories and Descriptors. code D.2.8 [Software Enginnering]: Metrics –

Product metrics; code D.1.5 [Pattern recognition]: Clustering –Algorithms.
Key words and phrases. Software metrics, object oriented design, fuzzy clustering.

65



66 CAMELIA ŞERBAN

assess the design in an automatic manner. As a result, software metrics rep-
resent a solution, a means for quantifying those aspects considered important
for the assessment. They measure different aspects of software and therefore
play an important role in understandig, controlling and improving software
quality.

Several approaches [1, 2, 3, 4] were found in literature that address the
problem of metrics based assessment for OOD. However, these approaches
encounter some limitations: i) how to set proper threshold values for metrics
is not addressed; ii) they lack a standard terminology and formalism in order
to define the contextual background which can also serve for metrics definition.

To mitigate these limitations, a Conceptual Framework for OOD Assess-
ment (CFDA) has been introduced in our previous work [8]. This paper aims
to highlight the relevance of our results, presenting an experimental evaluation
of the proposed methodology for object-oriented design assessment.

The paper is organized as follows: Section 2 briefly describes our previ-
ous work. The proposed experimental evaluation is presented in Section 3.
To emphasize the advantages of the CFDA, Section 4 presents a comparison
with a related approach based on detection strategies [1]. Finally, Section 5
summarizes the contributions of this work and outlines directions for further
research.

2. Proposed methodology for object-oriented design assessment

In our previous work [8] we have proposed a quantitative evaluation method-
ology for object-oriented design. The proposed methodology, based on static
analysis of the source code, is described by a conceptual framework which has
four layers of abstraction: Object-Oriented Design Model, Formal Definitions
of OOD Metrics, Specifications of the Assessment Objectives and Mesurement
Results Analysis.

(1) Object-Oriented Design Model. The first layer formally defines
the domain of the assessment D(S) = (E,Prop(E), Rel(E)) of an
OOD corresponding to a software system S; this model describes the
design entities E that are evaluated, their properties Prop(E) and the
relationships between them Rel(E).

(2) Formal Definitions of OOD Metrics. The second layer consists
of a library of OOD metrics definitions. Metrics are formally defined
using the context delineated for the model presented by first layer and
expressing them in terms of algebraic sets and relations, knowledge
assumed as familiar since the first stages of our studies.



SHOTGUN SURGERY DESIGN FLAW DETECTION 67

(3) Specifications of the Assessment Objectives. The third layer
specifies in a formal manner the assessment objectives using a metrics
based approach.

(4) Mesurement Results Analysis. The last layer uses the fuzzy clus-
tering analysis method to interpret the measurement results obtained
in the assessment process. This method overcome the limitations of
the existing approaches which use threshold values for metrics. The
selected algorithm, Fuzzy Divisive Hierarchic Clustering (FDHC) [9]
produces a binary tree hierarchy that provides an in-depth analysis of
the data set, by deciding on the optimal subcluster cardinality and the
optimal cluster substructure of the data set.

Corresponding to these layers, the proposed framework will be associ-
ated with a 4-tuple, CFDA=(OOD-Model, Metrics-Definition, Assessment-
Objectives, Results-Analysis), where the acronym CFDA stands from Concep-
tual Framework for Design Assessment.

Figure 1 presents the elements of CFDA, emphasizing their interactions.
The proposed conceptual framework contains a predefined and customizable
catalogue of software metrics. The definition of these metrics are written using
the language which describes the OOD Model. The assessment objectives are
specified using a predefined catalogue of design heuristics, rules and principles,
and a set of design flaws. The Results Analysis gathers data from the three
components of CFDA framework in order to establish the assessment results.

Figure 1. The four layers of OOD Assessment Framework



68 CAMELIA ŞERBAN

3. Shotgun Surgery design flaw detection. Case-study

In this section, we describe the steps needed to be performed to apply the
proposed evaluation framework on an open source application, namely log4net
[11]. It consists of 214 classes grouped in 10 packages.

3.1. Domain Assessment Identification. We parse the source code of log4net
application and produce the domain of the assessment,

D(log4net) = (E,Prop(E), Rel(E))

i.e the design entities (E), their properties (Prop(E)) and the relations be-
tween them (Rel(E)). These elements define a model for object oriented design
[1] and they are described in a formal manner in our previous work [8].

3.2. Setting the Assessment Objectives. The objective of the proposed
assessment is to identify those classes AE ⊂ E (AE - assessed design entities)
from the log4net application affected by “Shotgun Surgery” [10] design flaw.
In order to attain this goal we proceed as follows:

• a set of design principles, heuristics or rules DP are related to “Shot-
gun Surgery” design flaw, defining a flaws–principles graph FPG =
(DF,DP,GDF 7→DP ),GDF 7→DP ⊆ DF×DP ,DF = {ShotgunSurgery}.
FPG represents the second element of the assessment objectives speci-
fication definition, introduced in [8]; so, we aim at this step to establish
what are those design principles, heuristics or rules which could better
define the DP set.

• the elements of DP are then related to a set of software metrics M
which quantify these principles, obtaining the principles–metrics graph
PMG = (DP,M,GDP 7→M ), where GDP 7→M ⊆ DP ×M .

The 3-tuple AO(log4net) = (AE,FPG,PMG) represents the assessment
objectives specification regarding the evaluation of the object oriented design
D(log4net) = (E,Prop(E), Rel(E)) corresponding to log4net application.

In order to identify the elements of the assessment objectives specifica-
tion components, AO(log4net) = (AE,FPG,PMG), we analyse in detail the
“Shotgun Surgery” design flaw.

A class that is coupled to a large number of other classes and that pro-
duces a large number of changes throughout the system in case of an internal
change, can be considered a possible suspect of Shotgun Surgery design flaw
[10]. Shotgun Surgery means that a change on a given class entails many
changes to a lot of different classes. In brief, this design flaw approaches the
issue of “strong implementation coupling” [1]. It is difficult to spot changes
spreading over many places. Therefore, an excessive coupling has a negative



SHOTGUN SURGERY DESIGN FLAW DETECTION 69

effect on many external quality attributes like reusability, maintainability and
testability.

The “open-closed principle” [12] is one of the most important principles of
object oriented design. According to this, software entities (classes, modules,
functions, etc.) “should be open for extension, but closed for modification”. It
is correlated with the principle of “low coupling”. They are both concurrent
in stating that those design entities that could propagate a lot of changes in
the system when something was changed inside them, have to be identified
and reviewed.

Another important design heuristic, related to Shotgun Surgery design flaw
may be “Minimize the Number of Messages in the protocol of a class” [5].

In order to identify metrics which capture the meaning of this design flaw,
further analysis of these principles and heuristics are needed. In this respect,
Marinescu [1] have identified three potential “victims” of changes in a class:

• methods directly accessing an attribute that has been changed ;
• methods calling for a method whose signature has been changed ;
• methods which override a method whose signature has been changed.

Therefore, two metrics are selected [1] to quantify the above mentioned
aspects. These metrics are briefly described below:

• Changing Methods (CM) [1] is defined as the number of distinct meth-
ods in the system that would be potentially affected by changes oper-
ated in the measured class. The methods potentially affected are all
those that access an attribute and/or call a method and/or redefine a
method of the given class.

• Changing Classes (CC) [1] is defined as the number of client-classes
where the changes must be operated as the result of a change in the
server-class.

To add more clarity for the above mentioned statements, Figure 2 presents
the specification of the assessment objectives.

3.3. Formal definitions of the selected metrics. The metrics selected to
quantify the “Shotgun Surgery” design flaw, CM , CC, are formally defined
using the context delineated for the model presented by first layer of CFDA
[8]. Their definitions are expressed in terms of algebraic sets and relations.

3.4. Measurement Results Analysis. The results of the assessment are a
set of design entities that were evaluated AE = AEShotgun Surgery = Class(E),
in this case the set of classes from log4net application, together with their
corresponding values of the selected metrics MShotgun Surgery = {CM,CC}.
Based on the metrics values, we will select from AE the “suspect” entities
(those classess affected by “Shotgun Surgery” design flaw).



70 CAMELIA ŞERBAN

Figure 2. Specification of the assessment objectives.

Following a classical approach we have to set thresholds values for metrics
that we use. In order to overcome this limitation, we propose an alternative
approach, based on fuzzy clustering analysis. Thus, an entity may be placed
in more that one group, having different membership degrees.

3.4.1. Fuzzy partitions determination. Applying the FDHC algorithm, using
as input data the set of classes from log4net application, each class being
identified with a vector of metrics values, we obtain an optimal fuzzy partition,
described in Table 1. In what follows, this partition will be denoted through
UAEShotgun Surgery ,MShotgun Surgery

= {1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1, 2.2}
From each cluster of the partition UAEShotgun Surgery ,MShotgun Surgery

, we de-
termined the list of isolated data points. In the case of “Shotgun Surgery”
design flaw the list of entities considered isolated data points are as follows:

• 72, 183, 199 (from cluster 1.1), 63, 70, 71, 73, 170, 210 (from cluster
1.2); these entities have the CC metric value equal to 1;

• 6, 19, 24, 74, 82, 101, 112, 122, 131, 139, 172 (from cluster 2.1); these
entities have the CC metric value greater than 1, the rest of entities
having the CC metric value equal to 1;

• 48, 78 (from cluster 2.2.1); these entities have metrics values very
disimilar with the rest of entities from this cluster; they have CM=5
and CC=3, while the rest of entities have CC=1;

• from cluster 2.2.2 no isolated data points were identified.

The entities considered isolated points are removed from the clusters and
considered for further analysis. The partition obtained after the elimination
of isolated data points is denoted as U

′
AEShotgun Surgery ,MShotgun Surgery

and the

cardinality of this partition is 192.



SHOTGUN SURGERY DESIGN FLAW DETECTION 71

Cluster Members (ClassId) No. of members

1.1 1 183 8 72 199 5
1.2 2 20 63 71 73 91 92 135 170 210 64 70 127

194
14

2.1 3 19 21 24 37 57 74 112 126 139 140 181 213
42 52 75 163 173 175 176 179 189 192 7 13
17 28 31 40 49 60 87 101 115 123 131 171
182 184 188 204 206 68 69 162 197 201 4 39
146 174 190 202 6 33 82 122 172

58

2.2.1 14 30 36 43 48 78 141 169 180 200 15 26 34
41 45 55 59 77 85 132 142 205 209 5 9 12 16
18 25 27 29 35 44 47 56 61 65 67 84 86 88
94 116 128 130 151 158 177 185 186 193 195
198 203 208

55

2.2.2 22 32 58 62 76 79 81 107 114 118 124 125 133
137 138 147 148 149 154 167 178 187 191 196
207 10 11 23 38 46 50 51 53 54 66 80 83 89
90 93 95 96 97 98 99 100 102 103 104 105 106
108 109 110 111 113 117 119 120 121 129 134
136 143 144 145 150 152 153 155 156 157 159
160 161 164 165 166 168 211 212 214

82

Total number of entities 214

Table 1. Optimal fuzzy partition of a set of 214 class objects.

3.4.2. Criteria used for “suspect” design entities identification. All clusters
have been examined in order to identify which of them contain classes that are
suspects of the “Shotgun Surgery” design flaw. As we have discussed earlier,
a possible suspect will have high values for the CM and CC metrics. Thus, to
avoid the problem of setting up the software metrics threshold values in order
to establish which are the clusters that contain “suspects” entities, we consider
that a cluster with suspect entities has to meet the following condition: the
member’s average values for the CM and CC metrics are greater than the
average values of the entire set of the analyzed design entities.

Table 2 presents the average values for the CM and CC metrics, com-
puted for each cluster of the fuzzy partition U

′
AEShotgun Surgery ,MShotgun Surgery

=

{1.1, 1.2, 2.1, 2.2.1, 2.2.2}, partition obtained after the elimination of the iso-
lated data points. Thus, taking into account the above mentioned criterion,
clusters 1.1 and 1.2 have been identified as containing possible suspect entities.



72 CAMELIA ŞERBAN

Cluster Avrg(CM) Avrg(CC)

1.1 94.0 1.35
1.2 40.63 5.75
2.1 10.98 1
2.2.1 3.36 1.07
2.2.2 0.3 0.30
Class(E) 8.52 1.17

Table 2. The average values of the CM and CC metrics, com-
puted for each cluster. Clusters 1.1 and 1.2 are marked as
containing suspect entities. Class(E) represents the set of all
classes from the analized system.

Regarding the set of isolated points which were identified earlier, we can
conclude the following:

• The entities with id 63, 70, 71, 72, 73, 170, 183, 199, 210 are not taken
into account for further analysis. They have the value of CC metric
equals to 1.

• The entities with id 6, 19, 24, 48, 74, 78, 82, 101, 112, 122, 131, 139, 172
are considered suspect entities and they are selected from the cluster
2.1, 2.2.1.

In conclusion, the entities considered for further analysis are those classes
with the value of CC metric greater than 1. Their cardinality is 23 out of 214
design entities which were analyzed. They are presented in Figure 3.

The following statement argues the decision in the establishement of final
suspects list: if, by changes, two classes affect nmethods, the class that spreads
its changes over more classes is worse than the one that spreads them all in
one class. Thus, the final list of suspect entities contains classes with the value
of CC metric greater than 3 (see Figure 3.

4. Related Approaches Comparison

The current section aims to present a comparative study between our
approach on the identification of design entities affected by “Shotgun Surgery”
design flaw and the similar approach proposed by Marinescu [1] which is based
on setting the threshold values for metrics used. To identify those classes from
the system, affected by the above mentioned design flaw, Marinescu introduced
so called “detection strategy” defined by by the formula 1.

(1) ShotgunSurgery(c) =

{
1, ((CM ∈ TopV alues(20%))and(CM ≥ 10))and(CC ≥ 5)

0, else



SHOTGUN SURGERY DESIGN FLAW DETECTION 73

Figure 3. The list of “Shotgun Surgery” suspect entities con-
sidered for further analysis.

Applying the detection strategy defined before, we can conclude that:

• all entities identified as suspects by the approach of Marinescu are also
in our list of suspects;

• one entity with classId 172 identified by our approach, was not identi-
fied using the detection strategy based approach. The reason why this
was not considered as suspect by the approach of Marinescu is because
of its CC metric value (lower than 5).

5. Conclusion and Future Work

We have presented in this paper a case-study to experimentally validate
our proposed methodology for object-oriented design assessment [8]. The case-
study addressed the issue of “Shotgun Surgery” design flaws detection. The
approach is based on metrics and on fuzzy clustering analysis method. To



74 CAMELIA ŞERBAN

highlight the advantages of using our model, a comparative study with a sim-
ilar approach which uses threshold values for metrics has been made.

As one of our further work we aim to propose other comparisons with
similar approaches regarding OOD assessment based on metrics.

References

[1] R. Marinescu: Measurement and quality in object-oriented design, Ph.D. thesis in
the Faculty of Automatics and Computer Science of the Politehnica University of
Timisoara, 2003.

[2] S. Mazeiar, Li. Shimin, and T. Ladan: A Metric-Based Heuristic Framework to Detect
Object-Oriented Design Flaws Proceedings of the 14th IEEE International Conference
on Program Comprehension (ICPC06), 2006.

[3] P.F. Mihancea and R.Marinescu: Towards the optimization of automatic detection of
design flaws in object-oriented software systems, In Proc. of the 9th European Conf.
on Software Maintenance and Reengineering, 92-101, 2005.

[4] L. Tahvildari and K. Kontogiannis: Improving design quality using meta-pattern trans-
formations : A metric-based approach, Journal of Software Maintenance and Evolution:
Research and Practice, 16, 331-361, 2004.

[5] A.J. Riel: Object-Oriented Design Heuristics, Addison-Wesley, 1996.
[6] M. O’Keeffe and M. Cinnide: Search-based refactoring: an empirical study, Journal

of Software Maintenance and Evolution: Research and Practice, 20, 345–364, 2008.
[7] A. Chatzigeorgiou and G. Stephanides: Entropy as a Measure of Object-Oriented

Design Quality, 1st Balkan Conference on Informatics (BCI’2003), 21–23, 2003.
[8] C. Serban: A Conceptual Framework for Object-oriented Design Assessment. Com-

puter Modeling and Simulation, UKSim Fourth European Modelling Symposium on
Computer Modelling and Simulation, 90–95, 2010.

[9] D. Dumitrescu: Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145–
162, 1988.

[10] M. Fowler and K. Beck and J. Brant and W. Opdyke and and D. Roberts: Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999.

[11] Open source project: log4net, http://logging.apache.org/log4net.
[12] R. Martin. Design Principles and Patterns:

http://www.objectmentor.com/resources/articles/Principles and Patterns.pdf, 2006.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1 M. Kogălniceanu St., 400084 Cluj-Napoca,
Romania

E-mail address: camelia@cs.ubbcluj.ro


