
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 4, 2013

ON THE SOFTWARE METRICS INFLUENCE IN

RELATIONAL ASSOCIATION RULE-BASED SOFTWARE

DEFECT PREDICTION

ZSUZSANNA MARIAN

Abstract. Software defect prediction tries to automatically identify de-
fective software modules, in order to help software testers focus their time
and effort on those modules which are likely to contain faults. So far many
different machine learning algorithms have been used for this classification
task. We have introduced a new software defect prediction method, called
DPRAR, which uses relational association rules to classify modules, rep-
resented by a vector of software metric values, as faulty or non-faulty. In
this paper we investigate how different feature elimination techniques in-
fluence the results of the DPRAR method. We also consider two methods
for computing the scores for a module, which are two values showing how
close the module is to the faulty instances and the non-faulty instances.
Experiments on an open source dataset as well as comparisons to related
work are provided.

1. Introduction

Software systems are becoming more complex nowadays, made of many
components, with a great number of connections among them. In such complex
systems a thourough manual analysis and testing is usually impossible due to
time and size constraints. Still, releasing good quality and bug free (or with as
few bugs as possible) software is crucial for many organizations. This is why
different intelligent methods are often used, which can suggest those modules,
classes or components which are more likely to contain errors, thus helping
developers select which parts to focus on during testing. Such methods often
use the value of software metrics, and try to find anomalies in these values.

In [7] we have presented and experimentally analysed a novel model for
software defect prediction using relational association rule-based classification.

Received by the editors: October 8, 2013.
2010 Mathematics Subject Classification. 62H30, 68N99.
1998 CR Categories and Descriptors. H.2.8 [Database Management]:Database Appli-

cations - Data Mining; D.2.4 [Software Engineering]: Software/Program Verification;
Key words and phrases. relational association rules, software metrics, software defect

prediction.

35

36 ZSUZSANNA MARIAN

This model, presented in more detail in Section 2.2, uses a representation
where each module is described by a set of software metrics, also called fea-
tures, and it has a preprocessing step during which different software metrics
can be chosen to be eliminated from further steps of the model. In this paper
we analyse the effect of using different feature elimination methods on the
results of defect prediction. We will present three different feature elimination
methods and compare their results to the case when no feature is eliminated.

The model presented in [7] computes a score for every module, and the
prediction is based on this score. After determining the best feature elimina-
tion method, we will also investigate the results of using a different formula
for computing this score.

The rest of this article is organized as follows. Section 2 presents the back-
ground for this paper, in two subsections: Section 2.1 presents some similar
approaches from the literature in the field of defect prediction and Section 2.2
shortly presents the DPRAR model, a relational association rule-based classi-
fication model. Section 3 first presents the datasets used for the experiment
(Section 3.1), followed by the description of the comparison criteria (Section
3.2) and finally the description of the measures used for evaluating the re-
sults (Section 3.3). Section 4 presents the results of the experiments (Section
4.1) and a comparison to the results reported in related work from the litera-
ture (Section 4.2). Finally, Section 5 draws the conclusions of the paper and
identifies directions for future work.

2. Background

2.1. Related Work. Software defect prediction is a well researched field, with
many different approaches presented in the literature. In this section we will
give a short description of some methods from the literature that are either
similar to our method (i.e. they are using association rules) or they are tested
on the same dataset as our method, so a direct comparison of the results will
be possible.

According to our knowledge, no one has used relational association rules
for software defect prediction before, but other association rule-based methods
are presented in the literature. One example is the CBA method, presented
in [13], where so-called class association rules are mined (these are association
rules whose consequent is the class label). An extension of this method, the
CBA2 method, is presented in [14], where different minimum support can
be used for rules predicting different classes, thus trying to solve the class
imbalance problem. In [4] this CBA2 method is used for defect prediction and
results of experiments on different Nasa datasets are presented.

ON SOFTWARE METRICS INFLUENCE IN SOFTWARE DEFECT PREDICTION 37

In [16] Rodriguez et al. present an algorithm, called EDER-SD (Evolu-
tionary Decision Rules for Subgroup Discovery), which generates only rules de-
scribing the faulty modules. Experiments performed on different Nasa datasets
revealed that this method is better than other Subgroup Discovery algorithms.

Besides rule-based methods, different other machine learning algorithms
were also applied for software defect prediction. For example, in [10] 37 dif-
ferent classifiers are compared on five Nasa datasets. The conclusion of the
paper is that there is no single classifier that performs best for every dataset,
but, on average, bagging has the best performance. Menzies et al. compare
three classifiers, OneR, J48 and Naive Bayes, and different filters in [15] out
of which Naive Bayes with a log filter produced the best results. Challagulla
et al. compare 11 classifiers in [5] and conclude that there is no method which
performs best for every dataset, but, in general, OneR and Instance Based
Learning perform well.

Another direction for software defect prediction is the use of disagreement-
based semi-supervised learning methods. One such method is ROCUS, pre-
sented in [11], which builds several classfiers for the labeled examples and then
tries to assign labels for the rest of the examples based on majority voting
among the classifiers. It also uses under-sampling to handle the class imbal-
ance problem. Another similar method is presented in [12], called ACoForest,
which uses active-learning, which means that it can suggest which examples
to label (the ones on which the classifiers mostly disagree), so in a software
defect prediction scenario, it can suggest which modules should be tested.

Since defect prediction datasets are usually imbalanced, i.e. there are a lot
more negative examples than positive ones, many methods try to handle this
problem, too. Besides CBA2 and ROCUS, which try to solve this problem,
there are other methods which focus on this aspect. One such method is pre-
sented in [21], where the imbalanced binary dataset is first transformed into a
balanced multiclass dataset and the classifiers are trained on this new dataset.
Wang and Yao in [22] first evaluate different existing class imbalance learn-
ing methods, and for the best one, AdaBoost, they introduce a new dynamic
version, which can automatically adjust its parameters during training.

2.2. The DPRAR model. The DPRAR (Defect Prediction using Relational
Association Rules) model is a novel supervised method for detecting defective
software entities, introduced in [7]. One important part of this approach is to
represent the entities of the software system, which can be methods, classes,
modules and so on, as a multidimensional vector, where each element of the
vector is the value of a software metric (feature), computed for the given entity.
The main problem in defect detection is to determine whether such an entity
contains defects or not.

38 ZSUZSANNA MARIAN

Such a problem can be considered a binary classification problem, with two
classes, defective (denoted in our case by “+”) and non-defective (denoted by
“-”). In order to classify an entity (represented as a multidimensional vector
of software metric values) as defective or not, the following three steps are
performed:

• Data pre-processing;
• Training/building the DPRAR classifier;
• Classification/testing.

During the first step, data pre-processing, the software metric values are
scaled to the [0,1] interval, and a statistical analysis is carried out to determine
if some of the software metrics should be eliminated from further analysis.
During this analysis the Spearman’s rank correlation of each software metric
to the target value is computed and, based on the result, some software metrics
can be eliminated, reducing the dimensionality of data. In this paper we
will analyse how different feature elimination methods influence the result of
classification. The elimination methods used in this analysis are presented in
Section 3.2.

Before presenting the second step, we will shortly describe what relational
association rules are, as presented in [17]: let R = {r1, r2, . . . , rn} be a set of
instances, in our case modules, where each instance is characterized by a list
of m attributes (a1, . . . , am). We denote by Φ(rj , ai) the value of attribute ai
for the instance rj . Each attribute ai takes values from a domain Di, which
contains the empty value denoted by ε. Between two domains Di and Dj

relations can be defined (not necessarily ordinal relations), such as: less or
equal (≤), equal (=), greater or equal (≥), etc. We denote by M the set of all
possible relations that can be defined on Di ×Dj .

A relational association rule [17] is a sequence (ai1 , ai2 , ai3 , . . . , aiℓ) such
that aij µij aij+1 holds for each 1 ≤ j ≤ l − 1, where {ai1 , ai2 , ai3 , . . . , aiℓ} ⊆
A = {a1, . . . , am}, aij ̸= aik , j, k = 1..ℓ, j ̸= k and µi ∈ M is a relation over
Dij ×Dij+1 , Dij is the domain of the attribute aij . If:

a) ai1 , ai2 , ai3 , . . . , aiℓ occur together (are non-empty) in s% of the n in-
stances, then we call s the support of the rule,
and

b) we denote by R′ ⊆ R the set of instances rj where ai1 , ai2 , ai3 , . . . , aiℓ
occur together and Φ(rj , aik) µk Φ(rj , aik+1

) holds for each 1 ≤ k ≤ l−1
for each instance rj from R′; then we call c = |R′|/|R| the confidence
of the rule.

The length of a relational association rule is the number of attributes in the
rule, which can be at least two and at most the number m of attributes. In any
dataset a huge number of relational association rules can be found, but we are

ON SOFTWARE METRICS INFLUENCE IN SOFTWARE DEFECT PREDICTION 39

usually interested only in rules with at least smin support and cmin confidence,
also called interesting rules. Both smin and cmin are user defined thresholds.
In [6] we have presented an Apriori [3] like algorithm, called DRAR, which
can efficiently find all relational association rules in a dataset.

During the second step, the DPRAR classifier is built. Since software de-
fect prediction is a supervised classification task, we need a set of training data,
which is divided into two subsets: DS+, consisting of those instances from the
training data which are defective, and DS−, consisting of the non-defective
instances. On these sets relational association rule mining is performed, which
will give two sets of relational association rules, denoted by RAR+ (rules mined
from DS+) and RAR− (rules mined from DS−). For each rule r from these
two sets, a value called ratio(r), is assigned, obtained by dividing the rule’s

confidence to its support: conf(r)
supp(r) .

The third step of the model consists of the classification of a new entity.
At this step, we will compute two scores, score+ and score−, which try to
capture the similarity of the entity to the defective (through score+) and the
non-defective (through score−) instances. In [7] these scores for an entity e
were computed in the following way:

• Compute n+ as the average values of ratio(r) for each rule r ∈ RAR+

that is verified by the entity e, and compute n− as the average values
of ratio(r) for each rule r ∈ RAR− that is not verified by the entity e.

• Calculate score+ as score+ = n+ + n−.
• Compute m− as the average values of ratio(r) for each rule r ∈ RAR−
that is verified by the entity e, and compute m+ as the average values
of ratio(r) for each rule r ∈ RAR+ that is not verified by the entity e.

• Calculate score− as score− = m+ +m−.

We can see that score+ measures not only how “close” the entity is to
the positive instances, but also how “far” it is from the negative ones. When
the two scores are computed, if score+ > score− we will classify the entity as
defective, otherwise it will be classified as non-defective. Besides analysing the
effect of different feature elimination methods, this paper will also investigate
the effect of using a different formula for computing the value of score+ and
score−, presented in Section 3.2.

3. Experiments

This section will describe the experiments that we performed both for
feature elimination and score computation. It also presents the dataset used
for these experiments, and the measures used for evaluating the results.

40 ZSUZSANNA MARIAN

3.1. Datasets. In order to be able to compare our results to other results
reported in the literature, we have decided to use one of the Nasa datasets
for this study. These datasets are open source and publicly available at [2], in
order to encourage the development of repeatable, verifiable and improvable
predictive models. These datasets were originally published at Nasa’s Inde-
pendent Verification and Validation (IV & V) Facility website [1], but are no
longer available there. In 2011 Gray et al. in [9] describe that, despite their
popularity, these datasets should be used carefully, because they need serious
data cleaning before use, because they contain a large number of duplicated
and inconsistent instances. While Gray et al. focuses more on the effect of
these duplicated and inconsistent instances on the performance of predictive
models, Shepperd et al. in [18] present, among others, an algorithm that cleans
the data. Both the implementation of the algorithm, and the cleared datasets
are available at the NASA - Software Defect Datasets webpage [2].

While in [7] we have used 10 out of the 13 Nasa datasets, in this paper
we will perform our experiments on only one of these datasets, called PC3.
This dataset contains data about modules from a flight software for earth or-
biting satellite, written in C. It consists of 134 positive instances (defects) and
943 negative instances (non-defects), namely the class distribution is 12.4%
instances are positive and 87.6% instances are negative. Each instance has 37
features and the class label.

3.2. Comparison criteria. As mentioned in Section 2.2, the DPRAR model
has a preprocessing step, when a statistical analysis is carried out, which can
lead to the elimination of different software metrics. Obviously, we would
like to eliminate those software metrics that do not significantly influence the
output value. In order to do so, for every software metric, we computed the
Spearman’s rank correlation coefficient [19] between the software metric and
the class label. A Spearman correlation of 0 between two variable X and
Y indicates that there is no tendency for Y to increase or decrease when X
increases. A Spearman correlation of 1 or -1 results when the two variables
being compared are monotonically related, even if their relationship is not
linear.

After computing the Spearman correlation of each software metric to the
class label, we compute the mean (denoted by m) and standard deviation
(denoted by stdev) of these correlations as well. The correlations, as well as
three lines, denoting the value m+ stdev, m and m− stdev are presented on
Figure 1.

In the following we will present those four different feature elimination
methods that are experimentally analysed in this paper:

ON SOFTWARE METRICS INFLUENCE IN SOFTWARE DEFECT PREDICTION 41

Figure 1. Correlations for PC3 dataset

(1) Case 1. The simplest version is to keep all the features. In case of the
PC3 dataset, this means that all 37 features will be used to generate
the relational association rules.

(2) Case 2. To eliminate only those features, whose correlation is lower
than m − stdev. This is the variant that we used in [7]. In case of
the PC3 dataset, this means that only one feature is removed, feature
number 15, called essential density.

(3) Case 3. To eliminate only those features, whose correlation is higher
than m + stdev. In case of the PC3 dataset, this means that four
features will the eliminated: the first feature, loc blank, feature number
18, halstead content, feature number 33, num unique operands and
feature number 35, number of lines.

(4) Case 4. To eliminate both features with correlation lower than m −
stdev and higher thanm+stdev. In case of the PC3 dataset, this means
eliminating the features mentioned for the two previous cases, namely:
essential density, loc blanc, halstead content, num unique operands,
number of lines.

Besides determining which of the above described four feature elimination
cases gives the best results, we want to experiment with the score calculation
formula as well. As presented in Section 2.2, for a module to be classified as
defective or not, we compute two values: score+ and score−. In [7], score+ is
computed by taking into consideration the ratio of rules from RAR+ verified

42 ZSUZSANNA MARIAN

by the module and the ratio of the rules from RAR−, not verified by the
module. Score− is computed similarly.

We will experiment with a different score computation formula, where, for
an entity e, score+ and score− are computed in the following way:

(1) score+(e) =
nrverif+(e) + nrneverif−(e)

|RAR+|+ |RAR−|

(2) score−(e) =
nrverif−(e) + nrneverif+(e)

|RAR+|+ |RAR−|
where nrverif+(e) is the number of rules from RAR+ that are verified by

the entity e, and nrneverif−(e) is the number of rules from RAR− that are not
verified by e. In the rest of this paper we will denote this score computation
method as scorenumber, while the other method, presented in Section 2.2, will
be called scoreratio.

3.3. Evaluation measures. In this section we present the measures used
to evaluate the results of the experiments. For every experiment, we used
a “leave-one-out” cross-validation methodology. After evaluating each entity,
we compute the confusion matrix [20], a two-by-two matrix, which consists
of the number of true positives (TP - the number of positive entities that
were classified by the DPRAR method as defective), true negatives (TN - the
number of negative entities that were classified negative), false positives (FP -
the number of negative entities classified as positive) and false negatives (FN
- the number of positive instances classified as negative).

In the literature different evaluation measures, whose value can be com-
puted based on these four values (TP, TN, FP, FN), are presented. In this
paper we are going to use three of them, precision, recall and AUC :

• Precision, denoted by Prec, denotes the proportion of predicted posi-
tives which are actual positives, i.e. Prec = TP

TP+FP .
• Recall, also called probability of detection, is the proportion of actual
positives, which are predicted positives, i.e. Recall = TP

TP+FN .
• AUC or Area Under the ROC Curve is often considered the best eval-
uation measure for comparing different classifiers [8]. The ROC (Re-
ceiver Operating Characteristics) curve is a two-dimensional plot of
recall versus (1 - specificity). ROC curves are usually constructed
for classifiers which, instead of directly returning the class of an in-
stance, return a score, which is transformed into the class label using
a threshold. For different values of the threshold, different (recall, 1
- specificity) pairs are obtained, which are represented on the ROC

ON SOFTWARE METRICS INFLUENCE IN SOFTWARE DEFECT PREDICTION 43

curve. As its name suggests, AUC measures the area under this curve.
In case of classifiers that return the class directly, like the DPRAR
classifier, the ROC space has one single point. As presented in [8], this
point can be linked with the points at (0,0) and (1,1), thus producing
a curve for which the AUC value can be computed.

For all three of these measures, the maximum value is 1, which represents
a perfect classifier (no false negatives and false positives).

4. Results and Discussion

This section presents the results of the performed experiments, together
with an analysis of these results, and a comparison to other results reported
in the literature for the PC3 dataset.

4.1. Results and analysis. The results of the experiments for the four fea-
ture elimination cases presented in Section 3.2 are presented on Figure 2.
For all four cases only rules of length 2 were mined, with a minimum support
threshold of 0.9. The minimum confidence threshold differs for the two classes,
for DS+ a threshold of 0.95 and for DS− a threshold of 0.995 was used. For
computing the scores, the scoreratio formula was used.

Figure 2. The results for the four different feature elimination methods.

From this Figure we can see that Case 4 has the highest value for each
measure. This is the case, when five software metrics are removed from the
analysis, both the ones with correlation less than m− stdev and the ones with
correlation greater than m+ stdev.

44 ZSUZSANNA MARIAN

The worst performance, considering all three measures, is achieved for Case
1, the case when no software metrics are removed. In case of Recall and AUC
this difference is quite small, 0.015 and 0.01 respectively, but for Precision the
difference is 0.037. This suggests that using any feature elimination method
improves the classifier.

For the other two cases the comparison is not so easy. Considering Preci-
sion, Case 3 is a lot better than Case 2 (by 0.34), but considering Recall and
AUC Case 2 has better values, even if in case of AUC the difference is only
0.001. In order to compare them better, we have looked at the number of false
negatives. False negatives are those instances which are actually positive, but
predicted as negative. In case of defect prediction, false negatives represent
faulty modules, classified as non-faulty. This is an error which, for defect pre-
diction, is more important than false positives, non-faulty modules classified
as faulty. Considering false negatives, Case 2 is better than Case 3, because
it has 20 false negatives, while Case 3 has 21. Case 4, having the best values
for all measures, has only 19.

For the best case, Case 4, we have performed another experiment, using the
scorenumber formula for computing the score. The results of this experiment,
compared to the results for Case 4, but with scoreratio are presented on Figure
3.

Figure 3. The results for Case 4 with the two different score
computation formulas.

ON SOFTWARE METRICS INFLUENCE IN SOFTWARE DEFECT PREDICTION 45

Method Precision Recall AUC

DPRAR - Scoreratio 0.913 0.858 0.923
DPRAR - Scorenumber 0.943 0.858 0.925

CBA2 n/a 0.255 0.821
ROCUS n/a n/a 0.795

Random Forest with one - against - one coding n/a n/a 0.85
Dynamic AdaBoost.NC n/a n/a 0.816

Table 1. Comparative results.

From Figure 3 we can see that both score computation formula leads to
the same Recall. Considering the other two measures, scorenumber has higher
values than scoreratio, even if the difference is quite small. Considering all
these, we can conclude, that using scorenumber instead of scoreratio improves
the performance of the DPRAR method for the PC3 dataset.

4.2. Comparison to Related Work. In this section we will present a short
comparison of the results of the DPRAR method to other methods. Unfor-
tunately, we can not compare our method to all methods presented in the
Related Work section, because:

• Not all methods are tested on Nasa datasets, and even in case of the
methods that are tested on Nasa datasets, not all of them use the PC3
dataset, that we have used.

• Not all papers report the same evaluation measures that we use. AUC
is often reported, but Precision and Recall are not, instead other dif-
ferent measures are used, and usually there is no measure used in every
paper.

Still, even for cases when the PC3 dataset was used, and the value of at
least one measure used by us is reported, an exact comparison is problematic.
One reason for this is the fact that we have used, as mentioned in Section 3.1,
the cleaned version of the PC3 dataset, but others did not. As presented by an
experiment in [9], using the uncleaned version, which contains duplicates, can
lead to better performance, because training and test sets are not perfectly
separated, they can contain common elements. Another difference can be in
the testing methods, we have used a leave-one-out cross-validation method,
while others used different methods.

The comparison to other methods is presented in Table 1. For each mea-
sure, the bold value represents the highest value for the given measure. n/a
stands for not available, for measures that were not reported for a given
method.

46 ZSUZSANNA MARIAN

The first two rows from Table 1 report the results of our method, for Case
4, for the two different score computation formulas. The third row presents
the values reported for the CBA2 method in [4]. The next line contains the
values for the ROCUS method, as reported in [11]. We would like to mention
that results for four different parameter settings are reported for ROCUS,
and we used here the highest AUC achieved in these experiments. The fifth
line contains the best results reported in [21] for a Random Forest algorithm,
using one-against-one coding. Finally, the last line presents the results of the
Dynamic AdaBoost.NC algorithm introduced in [22].

From Table 1 we can conclude that the best method, considering Precison,
Recall and mainly AUC, is DPRAR with the scorenumber score computation,
while the second is DPRAR with scoreratio.

5. Conclusions and Further Work

In this paper we have presented an experimental study about the effect of
different feature elimination techniques for a relational association rule-based
software defect prediction method, called DPRAR, introduced in [7]. All used
feature elimination techniques were based on the Spreaman’s rank correlation
of the features to the class label. We have presented four different cases for
feature elimination, and concluded that the best results, in terms of Precision,
Recall and AUC, are achieved when both features with correlation less than
m− stdev (mean correlation minus standard deviation of all correlations) and
features with correlation higher than m+ stdev are eliminated.

An important part of the DPRAR method is the score computation, since
the final prediction (i.e. whether an instance is predicted as faulty or not) is
directly based on this score. In [7] we have used a score computation based
on the support and confidence of rules. Here we performed an additional
experiment, with a different score computation formula, which considers only
the number of verified and unverified rules. This experiment showed that this
second score computation leads to better results than the one used in [7].

In the future we would like to perform experiments on other Nasa datasets
as well, to further investigate both the attribute elimination strategy and this
different score computation method.

References

[1] Nasa independent verification & validation facility,
http://www.nasa.gov/centers/ivv/home/index.html.

[2] Nasa software defect datasets,
http://nasa-softwaredefectdatasets.wikispaces.com/.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on Very

ON SOFTWARE METRICS INFLUENCE IN SOFTWARE DEFECT PREDICTION 47

Large Data Bases, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[4] Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart Baesens. Software defect predic-
tion based on association rule classification. Open Access publications from Katholieke
Universiteit Leuven urn:hdl:123456789/296322, Katholieke Universiteit Leuven, Febru-
ary 2011.

[5] Venkata U. B. Challagulla, Farokh B. Bastani, I-Ling Yen, and Raymond A. Paul.
Empirical assessment of machine learning based software defect prediction techniques.
In Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, WORDS ’05, pages 263–270, Washington, DC, USA, 2005. IEEE
Computer Society.

[6] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting software
design defects using relational association rule mining. Knowledge and Information Sys-
tems, 2013. Under review.

[7] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Software defect pre-
diction using relational association rule mining. Information Sciences, 2013. Under re-
view.

[8] Tom Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874,
2006.

[9] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. The misuse of
the nasa metrics data program data sets for automated software defect prediction. In
Proceedings of the Evaluation and Assesment in Software Engineering, pages 96–103,
2011.

[10] A.A. Shahrjooi Haghighi, M. Abbasi Dezfuli, and S.M. Fakhrahmad. Applying mining
schemes to software fault prediction: A proposed approach aimed at test cost reduction.
In Proceedings of the World Congress on Engineering 2012 Vol I, WCE 2012,, pages
1–5, Washington, DC, USA, 2012. IEEE Computer Society.

[11] Yuan Jiang, Ming Li, and Zhi-Hua Zhou. Software defect detection with rocus. Journal
of Computer Science and Technology, 26(2):328–342, 2011.

[12] Ming Li, Hongyu Zhang, Rongxin Wu, and Zhi-Hua Zhou. Sample-based software defect
prediction with active and semi-supervised learning. Automated Software Engineering,
19(2):201–230, 2012.

[13] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule
mining. In Proceedings of the 4th International Conference on Knowledge Discovery and
Data Mining (KDD), pages 80–86, 1998.

[14] Bing Liu, Yiming Ma, and Ching-Kian Wong. Data Mining for Scientific and Engi-
neering Applications, chapter Classification Using Association Rules: Weaknesses and
Enhancements. Kluwer Academic, 2001.

[15] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1):2–13, 2007.

[16] D. Rodŕıguez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Searching for rules to
detect defective modules: A subgroup discovery approach. Inf. Sci., 191:14–30, May
2012.

[17] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

48 ZSUZSANNA MARIAN

[18] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality: Some
comments on the nasa software defect data sets. IEEE Transactions on Software Engi-
neering, 99(PrePrints):1, 2013.

[19] C. Spearman. The proof and measurement of association between two things. Amer. J.
Psychol.15, pages 72–101, 1904.

[20] S. Stehman. Selecting and interpreting measures of thematic classification accuracy.
Remote Sensing of Environment, 62(1):77–89, October 1997.

[21] Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. Using coding-based ensemble learn-
ing to improve software defect prediction. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 42(6):1806–1817, 2012.

[22] Shuo Wang and Xin Yao. Using class imbalance learning for software defect prediction.
IEEE Transactions on Reliability, 62(2):434–443, 2013.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Ro-
mania

E-mail address: marianzsu@cs.ubbcluj.ro

