STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

NETWORK INTERFACE AGGREGATION FOR IP
TUNNELING

ADRIAN SEREDINSCHI™” AND ADRIAN STERCA®™

ABSTRACT. We present in this paper a network interface aggregation frame-
work for IP tunneling. Our framework periodically measures the level of
congestion on routes going through each network interface and based on
these measurements, it decides how many flows to send on an outgoing
network interface at a time. In this way, we can achieve better inter-flow
fairness regarding bandwidth utilization.

1. INTRODUCTION. IP MULTIHOMING AND IP TUNNELS

IP multihoming means any form of providing reliable network connectivity
to a service point in the network. It implies two or more redundant network
connections from this node to the core network. IP multihoming can be real-
ized in a static setup (i.e. when specific flows are statically mapped/routed to
a specific uplink interface) or in a more dynamic setup using BGP.

IP tunnels are used to transparently connect two distant networks that
normally do not have a native routing path between them. There are several
types of IP tunnels, from simple ones like IP-in-IP encapsulation to GRE
and to IPSec tunnels which create a virtual private network composed of two
remote sites.

In this work we would like to combine multihoming routing algorithms with
IP tunnels in order to provide reliable, load-balanced virtual private network
links between two remote sites. More specific, the network architecture we
consider is depicted in Figure 1.

Received by the editors: April 30, 2013.

2010 Mathematics Subject Classification. 68M20, 68U99.

1998 CR Categories and Descriptors. C.2.2 [Computer-Communication Networks|:
Subtopic — Network Protocols; C.2.3 [Computer-Communication Networks]: Subtopic
— Network Operations.

Key words and phrases. network interface aggregation, IP tunneling, IP multihoming.

This paper has been presented at the International Conference KEPT2013: Knowledge
Engineering Principles and Techniques, organized by Babes-Bolyai University, Cluj-Napoca,
July 5-7 2013.

116

NETWORK INTERFACE AGGREGATION FOR IP TUNNELING 117

FI1GURE 1. The network architecture

We consider a network setup where two remote local area networks denoted
in the figure by Site A and Site B have each several uplink connections to the
Internet (generally, we consider a small number of network links, two or three,
per network site) and we want to connect them in a virtual private network.
For this, we need an IP tunnel (i.e. IPSec or something else) between these
two sites, but we also want to spread the outgoing tunnel traffic on all uplink
connections of a site, so that the network bandwidth of a site is optimally used.
In Figure 1, Site A has two uplink connections, one through ISP1 and the other
through ISP2 and Site B has also two uplink connections, one through ISP3
and the other through ISP4. There are four possible network paths between
Site A and Site B: a path going through ISP2 and ISP3, another path going
through ISP1 and ISP4, another path going through ISP2 and ISP4 and,
finally, the last path going through ISP1 and ISP3. We depicted in Figure
1 and consider in our framework only the first two paths because we want
the network paths to be as independent as possible (i.e. to have a number of
common links close to zero), at least theoretically. Of course, in reality there
is no guarantee that the network route going through ISP2 and ISP3 and the
network route going through ISP1 and ISP4 do not share any intermediate
network link. When the network paths between Site A and Site B share a
large number of network links our algorithm would be less effective, but this
situation will be discussed further in section 3. Our algorithm routes packets
sent by the local area network through the tunnel logical interface on one of
the existing paths from the source site to the destination site based on the
level of congestion experienced by each network path. The goal is to achieve a
better utilization of the network bandwidth (between the source site and the
destination site) and to achieve a higher degree of inter-flow fairness between
the flows originating from the same network site and sharing the tunnel.

118 ADRIAN SEREDINSCHI AND ADRIAN STERCA

The rest of the paper is organized as follows. In the next section re-
lated work is reviewed. Then, section 3 describes the main algorithms of our
framework of network interface aggregation for IP tunnels followed by section
4 which shows some experiments performed using our framework which will
validate its usefulness. The paper ends with conclusions in section 5.

2. RELATED WORK

Dynamic IP multihoming is normally realized using BGP [1]. But since
BGP is a general distance-vector routing protocol and BGP routing tables are
normally quite large, BGP makes its route selection decision based on local
preferences or weights and hop-count costs and it does not use real-time link
state information like the congestion level of a whole route in this selection
process; this is because it is very costly to probe every possible destination
network it knows and it does not have control over the whole network path.

Policy-based routing is another technique used for IP multihoming. In
policy-based routing, the next hop is determined based on the source IP ad-
dress of the packet and routing policies are set by a human operator. A more
general form of policy-based routing is source based routing in which the net-
work route on which a packet will travel is specified partially or totally in
the packet header. Source based routing is especially used in the context of
wireless ad hoc networks, but it requires modifications in the TCP/IP stack
currently deployed in Internet routers [2], [3].

Another routing technique related to our framework is multipath routing
used also in the context of wireless ad hoc networks [4]. In multipath rout-
ing a flow’s packets are sent to the destination over multiple routes, possibly
overlapping, in order to improve the efficiency of the transport. An important
problem with multipath routing is that sending a flow over different network
routes can cause many out of order packets at the receiver which can degrade
the throughput of the upper level protocol, i.e. TCP.

All the above techniques function at level 3 in the TCP/IP stack and
they are all meant to increase the throughput efficiency of the data at the
router. Similar approaches exist also at level 2, namely Ethernet link ag-
gregation/bounding (LACP protocol in IEEE 802.1ax or open-source Linux
bounding driver).

The same idea of using different network paths between the source network
and the destination network depending on the level of congestion on each path
is explored at a higher level, level 4 (i.e. the transport level), in Multipath-
TCP [5] where a TCP flow is split over several routes depending on the level
of congestion on each route. In Multipath-TCP selecting the current route
for a packet is done in an end-to-end fashion at the source end node, while in

NETWORK INTERFACE AGGREGATION FOR IP TUNNELING 119

our case is done inside the network by the source router which does not split
a single TCP flow on different routes, but considers all the flows originating
from the source network/site. Also, in Multipath-TCP an end host relies on
some support from the network (i.e. from network routers) in order to route
the packet on a specific route established by the source end node.

Probably, the work closest to ours is presented in [6]. In [6] authors present
a multi-homing solution using IP tunnels in order to achieve higher throughput
for TCP flows originating on a specific site and having a specific destination
site. TCP flows are split over several network interfaces at IP level so that
the resulted total bandwidth is the bandwidth aggregated over these network
interfaces. Our work is different than the one presented in [6], because we
estimate differently the congestion (i.e. available bandwidth) on each network
path and our paper considers all flows originating in the source sites while the
author of [6] only deal with splitting a TCP flow across the outgoing network
links.

3. NETWORK INTERFACE AGGREGATION FOR IP TUNNELING

The goal of our network interface aggregation framework for IP tunnel-
ing is to split outgoing traffic on the IP tunnel so that a link that is more
congested than other should receive less traffic in order to maintaining a high
degree of inter-flow fairness among all flows originating at the same source. In
order to achieve this, our framework periodically measures the current level
of congestion of each outgoing link and sends a corresponding fraction of the
total traffic on this link.

The architecture of our framework is depicted in Figure 2. The framework
runs at both sides of the tunnel and at each side it is composed symmetrically
from two modules:

e [P mangler module
e statistics gatherer module

The IP mangler module is responsible with choosing an outgoing link
for the current packet. It chooses an outgoing link for a packet by setting
(mangling) the source IP address and the destination IP address in the outer
IP header of the packet. Using the statistics gatherer module, our framework
computes a congestion metric for each (considered) route between the source
site and the destination site. If we consider the routes from Figure 1 and we
consider that the route going through ISP2 and ISP3 has the congestion metric
cong-metric_0 and the route going through ISP1 and ISP4 has the congestion
metric cong-metric_1 then traf fic.weight_0 of the total traffic will be sent on
the route ISP2-ISP3 and traf fic.weight_1 of the total traffic will be sent on
the route ISP1-ISP4 where

120 ADRIAN SEREDINSCHI AND ADRIAN STERCA

Application -
|

Tunneling IP encapsulation

Application >

PTP logical interface

louwialuy

Statistics module [P routing/mangler
module

FiGURE 2. Our IP Tunneling Aggregation Framework

cong_metric_0

t ic.weight 0 =1 —
raf fic.weig cong_metric_0 + cong_metric_1

cong_metric_1
traf ficoweight 1 =1 — g

cong-metric_0 4+ cong_-metric_1

and traf ficoweight 0,traf ficweight_1 € [0,1] and traf fic.weight 0 +
traf ficoweight 1 = 1.

Considering that there are N flows going out through the tunnel and all
flows are non-limited TCP flows (i.e. they use as much bandwidth as it is
available), because we want to send, as much as possible, all the packets
of a flow through the same outgoing link (to avoid packet reordering), we
approximate traf ficoweight_0 of the total traffic with traf fic_weight 0 - N
flows and traf ficweight_1 of the total traffic with traf ficweight_1- N flows.
In order to ensure a correct functioning of the statistics gatherer module, we
enforce that there exists at least one flow on each outgoing link (if the total
number of flows is greater than 1).

The statistics gatherer module monitors the congestion level on the
outgoing links of the site. This module uses passive measurements on the
incoming traffic in order to determine the level of congestion. More specifically
it probes incoming acknowledgment packets on each network interface for the
timestamp value in the TCP header (i.e. the T'Secr field) and it measures the
RTT on that interface. Computing the current congestion level on a link is
done in a way similar to how TCP Vegas does [7]. For each link a smoothed

NETWORK INTERFACE AGGREGATION FOR IP TUNNELING 121

weighted average value of the round-trip time is kept in the state variable srtt:
srtt = srit - 0.975 4+ rtt_curr - 0.025

where rtt_curr is an approximation of the current RTT obtained by subtract-
ing the TSecr value of a packet from the current time. The congestion level
on a link is computed like this:

cong_metric = cong_metric - 0.9 + (srtt — min_srtt)* - 0.1

where min_srtt is the minimum srtt value measured so far on this interface.

The statistics gatherer module relies on the fact that all the packets of a
flow (i.e. data packets and acknowledgment packets) follow (approximately)
the same outgoing route, so that the RT'T measurement per link is consistent.
For this reason, our framework maintains a list of connections/flows for each
outgoing network interface. An entry in this connections list (i.e. a flow)
contains the following data:

e source IP address

e destination IP address
e source port

e destination port

e switch flag

where the first four items are taken from the inner packet, after the outer
IP and Ethernet headers are removed and the switch flag is set to ’true’ if
this flow is sent through a different network route by the remote site (e.g. the
flag is set to ’true’ if site A sends a flow/connection through the route ISP2 -
ISP3 and site B sends the same flow/connection (i.e. the ACK packets) back
through the ISP4 - ISP1 route in Figure 1). The switch flag is used by our
framework when a new decision to reallocate flows on network interfaces is
taken so that if some flows need to be moved from one interface to the other,
the flows having the switch flag set to true are chosen first.

From time to time, depending on the traffic weights set by the statistics
gatherer module and if the congestion level changed on at least one of the
routes, the IP mangler module reallocates flows on the network interfaces (i.e.
moves flows from the connections list of an interface to the connections list of
another interface and mangles the IP addresses of every packet belonging to
that flow accordingly). The IP mangler module reallocates flows on interfaces
if the following conditions are met for at least one outgoing network interface:

|srtt — min_srtt| > 0.5 - min_srtt

|srtt_last_reallocation — sritt| > min_srtt

where min_srtt is the minimum SRTT value measured on that network
interface, ever and srtt_last_reallocation is the srtt measured on this interface

122 ADRIAN SEREDINSCHI AND ADRIAN STERCA

when the last reallocation took place. When both conditions from above are
met for an interface, approximately traf fic.weight_0—traf fic.weight_1 flows
are moved from interface 1 to interface O if tra f fic.weight 0 > traf fic_weight_1
and traf ficweight_ 1 —traf ficweight_0 flows are moved from interface 0 to
interface 1 if traf fic.weight 0 < traf ficweight_1.

A final observation about our framework’s functioning is needed and that is
the initialization of the framework’s state. When started, our framework does
not have initial values for the srtt, cong_metric and traf fic.weight variables
for any interface, so the IP mangler module distributes flows equally among
existing network interfaces. Once there is at least 1 flow on each interface,
the TP aggregation framework can compute these values and it can distribute
flows on interfaces according to the level of congestion on each route/interface.
The srtt value is computed only from packets belonging to flows that follow
the same network path in both directions (i.e. flows that have the switch flag
set to ’false’) - this is required for the measurement to be relevant for that
network path.

4. EXPERIMENTS

In order to evaluate our network interface aggregation framework, we have
set up a test scenario as depicted in Figure 3. We have two machines, Site
A and Site B, connected to the network by 2 network interfaces each and a
router with 4 network interfaces which connects Site A and Site B. An IP-in-1P
tunnel is established between Site A and Site B. We started 32 TCP senders
on Site A and 32 TCP receivers on Site B and on each flow we sent random
data as fast as the network allows from site A to site B. We used a linux
traffic shaper on the network interfaces eth2 and eth3 of the Router to limit
the bandwidth on each route (i.e. simulate congestion). The traffic shaper
alternates the bandwidth of network interfaces eth2 and eth3 of the Router
between 1500 Kbits/sec and 3000 Kbits/sec at 30 seconds time intervals. The
bandwidth pattern is the following: in the first 30 seconds of a cycle both
interfaces are limited to 3000 Kbits/sec each, in the next 30 seconds ethO is
limited to 1500 Kbits/sec while ethl is still at 3000 Kbits/sec, in the following
30 seconds both interface have again 3000 Kbits/sec, and in the last 30-second
period of a cycle interface ethl is limited to 1500 Kbits/sec and interface eth0
keeps sending at 3000 Kbits/sec. This cycle of 4 states repeates indefinitely.

We have run 2 experiments on this network setup, each lasting for 300
seconds. In the first experiment we have used a static algorithm for splitting
the 32 TCP flows at site A on 2 network interfaces; this static algorithm
sends 16 flows on one interface/route and the remaining 16 flows on another
interface/route and it never realocates the flows on a different interface. In the

NETWORK INTERFACE AGGREGATION FOR IP TUNNELING 123

second experiment we have used our framework at site A to perform dynamic
reallocation of flows on outgoing interfaces depending on the level of congestion
on each route. We were only interested in the traffic flowing from site A to
site B, in this direction only. We measured at site A the flows per interface
allocation, the average RTT (i.e. srtt) measured on each interface in both
experiments and the average bandwidth per second received by a flow on each
interface in both experiments. Our findings are shown in Figures 4, 5, 6 and
7.

Router

Site A

eth0

g Site B

\etho

tunnel0

eth/ et

FiGuRE 3. Network setup used for evaluation

eth0

tunnel0

eth1 eth

The rtt and srtt values measured on interface eth0 of site A in the dynamic
reallocation experiment is pictured in Figure 4. The values of rtt and srtt
measured on interface ethO of A in the static allocation experiment is shown
in Figure 5. In both experiments, similar values of rtt and srtt were obtained
on interface ethl of A, so these plots are not included here. The srtt values are
measured in milliseconds. It can be seen in figures 4 and 5 that out framework
does not change significantly the RT'T and SRTT measurement on a network
interface.

Figure 6 depicts the allocation of flows per interface performed by our
network interface aggregation framework at site A.

For each of the two experiments, we have computed the average band-
width obtained by a flow on each of the two network interfaces (i.e. interfaces
ethO and ethl of site A). Then we computed a bandwidth-allocation-per-flow
fairness index which is equal to % where min_bw; is the minimum of
the two bandwidth-per-flow values on each network interface in second 7 and
maz_bw; is the maximum of the two bandwidth-per-flow values (on each net-
work interface) in the same second i.

The bandwidth allocation per flow fairness index is depicted as a function
of time in Figure 7 for each of the two experiments: the experiment when our

124 ADRIAN SEREDINSCHI AND ADRIAN STERCA

" RTT
300 | SRTT

250

RTTISRTT

150

50

s s s s s
o 50 100 150 200 250 300
Time(ms.)

FIGURE 4. The rtt and srtt measured on interface ethO of A
when our framework was used

RTT and SRTT evolution with static routes

RT]

200

100

50

s s s s s s
13350 13400 13450 13500 13550 13600

FIGURE 5. The rtt and srtt measured on interface ethO of A
when static allocation of flows was used

framework was used and the experiment when static allocation of flows was
employed (i.e. 16 flows on interface ethO and 16 flows on interface ethl).

We can see that, in general, our framework attains a higher Bandwidth-
per-Flow fairness index and on average, across all 300 seconds of the ex-
periments, our framework obtains a Bandwidth-per-Flow fairness index of
0.843688 while the static allocation scenario obtains a values of 0.741942, so
an improvement of slightly over 10%.

NETWORK INTERFACE AGGREGATION FOR IP TUNNELING 125

Flbws count per éthO
30 Flows count per ethl ——+—— o

25 -

Flows count per interface

.
o 50 100 150 200 250 300 350
Time

FIGURE 6. Distribution of flows on interfaces ethO and ethl of
A when our framework was used

T T
Fairness index for dynamic routing —+—
1.4 Fairness index for static routing ————
Avg fairness index for dynamic routing ——s<—
Avg fairness index for static routing ——

Faimess index

0.2 -

o 50 100 150 200 250 300
Time
FI1GURE 7. Bandwidth-per-Flow fairness index obtained by our
framework vs. static allocation scenario

5. CONCLUSION

We have presented in this paper a framework for network interface ag-
gregation for IP tunneling. Our framework periodically measures the level of
congestion on routes going through each network interface and based on these
measurements, it decides how many flows to send on an outgoing network
interface at a time. The utility of our framework is validated in section 4.

126 ADRIAN SEREDINSCHI AND ADRIAN STERCA

REFERENCES

[1] Y. Rekhter, T. Li, S. Hares, A Border Gateway Protocol 4 (BGP-4), RFC 4271, January
2006.

[2] Andrews, M., Fernandez, A., Goel, A., Zhang, L., Source routing and scheduling in packet
networks Journal of the ACM (JACM), 52, pp. 582-601, 2005.

[3] Johnson, D. B., Maltz, D. A., Broch, J., DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networks, in Ad hoc networking, 5, pp. 139-172, 2001.

[4] Nasipuri, A., Castaneda, R., Das, S. R., Performance of multipath routing for on-demand
protocols in mobile ad hoc networks, in Mobile Networks and applications, 6(4), pp. 339-
349, 2001.

[5] Han, H., Shakkottai, S., Hollot, C. V., Srikant, R. and Towsley D., Multi-path TCP: a
joint congestion control and routing scheme to exploit path diversity in the internet in
IEEE/ACM Transactions on Networking 14, 6, pp. 1260-1271, 2006.

[6] Phatak, D. S., Goff, T., Plusquellic, J., IP-in-IP tunneling to enable the simultaneous use
of multiple IP interfaces for network level connection striping, in Computer Networks,
43(6), pp. 787-804, 2003.

[7] Lawrence S. Brakmo , Sean W. Omalley , Larry L. Peterson, TCP Vegas: New techniques
for congestion detection and avoidance, in Proc. of ACM SIGCOMM Conference, 1994.

@ BABES-BoOLYAT UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, CLUJ-NAPOCA,
RoMANIA
E-mail address: sdsd0494@scs.ubbcluj.ro

E-mail address: forest@cs.ubbcluj.ro

