
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

WEB SERVICE MATCHING

FLORIN M. BOIAN(1), ADINA PLOSCAR(1), AND RAREŞ F. BOIAN(1)

Abstract. The paper addresses the heterogeneity of implementing web
services of different types on various platforms, and the need for a way
to determine whether two web services are matching. Starting with an
analysis of the implementation differences and theoretical base for deter-
mining matching automatically, the paper proposes a novel architecture.
The architecture offers a unified way of designing and creating web services,
which eliminates the existing differences plaguing the available frameworks.
It also offers support for automatic formal detection of web service match-
ing.

1. Introduction

Web pages were, until recently, the main form in which data was offered on
the World Wide Web for human consumption. Therefore the Web is mostly
used for browsing using a Web browser to read news/articles, to buy goods
and services, to manage on-line accounts and so on.

From a publishing perspective, this is realized by transforming the infor-
mation from a database, for example, into HTML or similar language so that
it can be rendered in a user readable format. Many Web sites put together
information extracted by other sites via Web pages, which is an inconsistent
process involving decoding and parsing human-readable information not in-
tended for machine processing at all.

Received by the editors: April 17, 2013.
2010 Mathematics Subject Classification. 68N25, 68U35.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed systems; D.2.12 [Software]: Software
Engineering – Interoperability ; H.3.5 [Information Systems]: Information Storage and
Retrieval – On-line Information Services; I.2.2 [Computing Methodologies]: Artificial
Intelligence – Automatic Programming.

Key words and phrases. web services, client, matching, XML-RPC, SOAP, REST, XRDL,
WSDL, WADL.

This paper has been presented at the International Conference KEPT2013: Knowledge
Engineering Principles and Techniques, organized by Babeş-Bolyai University, Cluj-Napoca,
July 5-7 2013.

105

106 F.M. BOIAN, A. PLOSCAR, AND R.F. BOIAN

This scenario works well in many cases but it does not support software
interactions very well. What is really needed is a mechanism through which
the raw data from a database can be accessed in a similar fashion by machines
as humans read Web pages now. To reach this goal we need a specialized
client that knows how to perform true machine-to-machine communication
thus creating a Web that is machine process-able.

In the last 15 years, three models of web services were studied:

• XML-RPC model
• SOAP (+ WSDL and UDDI) model
• REST (RESTfully) model

For all three models, there are many implementations, open source as well
as commercial. In this context, four languages came to our attention: Java,
C], Python and PHP.

2. The Purpose of XRDL, WSDL, WADL

In [4] we presented a method for generating uniform web services and
clients. We discussed in that paper the WSWrapper package and how it has
as its central component the descriptor generator: XRDL - for XML-RPC
services, WSDL for SOAP services, and WADL for REST services. We also
proposed there a method for generating client proxies from those descriptors.

A major problem related to Web Services is matching them. There are
many web services available on the Internet and APIs offering functionalities
that are identical, similar or very close to each other. This leads to a natural
attempt to automatically detect such similar services. Studies on the similarity
problem are practically impossible to perform without formal descriptors of
the services.

Khorasgani et. al. studies in [9] the matching problem for RESTful ser-
vices. They propose the SFM (Semantic Flow Matching) method for studying
the equivalence of two services. Unfortunately, the results are far from be-
ing applicable. Their analysis is practically impossible without the use of a
WADL.

The WADL[19] purpose is to create a contract between the method ex-
porter (i.e. the service) and the calling clients. However, such a contract is not
mandatory [14]. WADL is not a standard and it is not maintained since 2009
but is important in the matching problem. If the service is to be integrated in
a complex system, extremely precise communication contracts are mandatory,
which turn the WADL in a necessary annoyance.

The matching analysis for SOAP web services is a very complex problem
because equivalent services can generate a wide variety of WSDL descriptors,
with significant differences between them.

WEB SERVICE MATCHING 107

XML-RPC web services are much simpler than SOAP, yet the matching
analysis is still very complex. The lack of a formal descriptor makes the
matching analysis inapproachable. For the time being, the only proposed
descriptor format is XRDL. Unfortunately, the adoption and pro/cons opinions
on this format are divided evenly among experts [16].

Our experience in Web service matching is the proposal in [2] of twelve
equivalent services: four XML-RPC services, four SOAP services, and four
REST services. Every such group of services was implemented in C], Java,
PHP, and Python. For every group and every language we implemented clients
for accessing the services. In [5] we published an extended version of this work
that includes Android clients as well.

All web services are identified with their URLs. These have the for-
mat: http://host:port/path from which port and/or path may be missing.
Working with web services, one quickly realizes that there is a wide variety of
constraints and restrictions regarding these URLs. In some cases the http://

must be present, while in other it doesnt need to be there. In some situations
port is mandatory, while in others it is not required or even forbidden. In
some cases path must end with /, in other cases / is forbidden, and so on.
Basically, every web service distribution comes with its own conventions.

We will detail this analysis in the next sections.

3. XML-RPC Case Study

The XML-RPC web service used in [2, 5] as a practical example for our
work was implemented in every of the four programming languages listed
above. The figure 1 shows the XRDL descriptor of this service.

Figure 1. XRDL descriptor for the Exec web service

108 F.M. BOIAN, A. PLOSCAR, AND R.F. BOIAN

The four implementations use very similar XRDLs as the one above, dif-
fering only in the values of attributes name, ns, and url of the service element.

The four implementations are:

• C] using XmlRpcCS-1.2
• Java using apache-xmlrpc-3.1.3
• PHP using xmlrpc-2.2.2 deployed on a web server running a PHP 5

engine
• Python using xmlrpclib which is packaged by default in Python 2.7

The localization of these services is relatively consistent. The PHP service
is identified by the host of the web service, while the other three create their
own web server which listens on the port specified in the URL. The Python
implementation requires the specification of both a port and a host address.

The registration of the exported methods is done differently in the im-
plementations. C] and Java simply provide the object which implements the
methods along with a name under which the clients see this object. In PHP
and Python each method is registered along with an associated name to be
used by the client.

The PHP implementation is done at the lowest level of all the four lan-
guages. Here one needs to specify both on the client and the server the en-
coding and decoding functions needed for converting the parameters and the
messages exchanged between the client and the service.

The clients were implemented on five platforms: C], Java, PHP, Python,
and Android. Each client gets the URL of the web service which includes the
name with which the client identifies it (the name under which the methods
are exported). The method calls are then done consistently and without issues.

Although these web services were implemented as equivalent, there is no
practical way to automatically prove their equivalence. Consequently, it is
necessary to automatically generate the XRDL descriptors which then can be
compared in order to prove that the web services match.

4. SOAP Case Study

In the work presented in [5] we used a single web service implemented in
multiple programing languages. The methods exported by the web service
are the same as those presented in the previous section. The descriptions are
similar with those in fig. 1 using the WSDL standard, but instead of param

s and param a we use param arg0, and instead of param b we use param

arg1. In the source code of the three web services we changed the definition
of method upcase to use parameter arg0 instead of s, and in method add

the two parameters are named arg0 and arg1 instead of a and b. This was
necessary due to constraints imposed by some of the clients calling the web

WEB SERVICE MATCHING 109

service. The C], Python and Android clients, and some PHP clients access the
parameters using their name while some Java and PHP clients use implicitly
declared names such as: arg0, arg1, arg2 , and so on. The four services we
implemented are:

• C] using a file of type *.asmx on an IIS web server[2].
• Java using apache-cxf-2.2.7 of type JAX-WS2.
• PHP using nusoap 0.9.5 with the web service deployed on a PHP 5

engine.
• Python using spyne. In [2] we used jkp-soaplib which could not be

accessed from C] and Java.

The localization of these services is relatively consistent. The C] and PHP
web services are identified by their host web servers. Java publishes an object
Endpoint which is configured with the service URL and a reference to the
object which exports the methods. PHP and Python require the developer to
specify the targetNamespace parameter and also an application name.

The method registration is done differently among the implementations.
In C] and Java the service object is annotated as WebService, and the ex-
ported methods are annotated as WebMethod. The web service Python extends
the standard spyne.service.ServiceBase object, and the methods are pre-
fixed with the @rpc decorator. PHP requires that each method be registered
individually along with its prototype and namespace.

The client needs to be treated independently for each service to be ac-
cessed.

For each C] or Java client that accesses a web service we must generate the
source code of a static proxy that accesses the web service. Thus there are four
C] clients and four Java clients created for every of the web services involved
in our analysis. The proxies are generated in a consistent manner. In C] this
is done using the WSDL utility on the web service URL. The utility generates
the C] code of the client and compiles it into a DLL which is integrated in the
client.

The client sources differ usually only through the line that defines the
proxy object named by us service. The definition of these proxies for each
web service is given below:

• Ss1Serv service = new Ss1Serv(); // for C]
• Sj1ServService service = new Sj1ServService(); // for Java

• Sh1Serv service = new Sh1Serv(); // for PHP

• Sy1Serv service = new Sy1Serv(); // for Python

This proves that our proposal in [1, 4] to use a single WebServiceClient

object for any platform is feasible.

110 F.M. BOIAN, A. PLOSCAR, AND R.F. BOIAN

The Java clients are of two types: JAX-WS for the C], Java and Python
web services; and AXIS1 for PHP. This is because nusoap does not support
(yet) JAX-WS. The JAX-WS proxies are generated using the wsimport util-
ity based on the web service URL. The generated sources are compiled and
built into a JAR which is then integrated in the client. For PHP, the proxy
generation is done using the Wsdl2Java utility. As for C], the clients differ
only in the proxy definition line:

• Ss1ServSoap service =

(new Ss1Serv()).getSs1ServSoap(); //for C]
• Sjj1Proxy.Sj1Serv service =

(new Sj1ServService()).getSj1ServPort(); //for Java

• Sh1ServPortType service =

(new Sh1ServLocator()).getSh1ServPort(); //for PHP

• Application service =

(new Sy1Serv()).getApplication();// for Python

These similarities reinforce the feasibility of our [4] proposal for using a
unified client object for any platform.

There are two types of PHP clients. The nusoap clients can only access
nusoap web services. The PHP 5 distribution supports the creation of SOAP
clients using the PHP SOAP module which is part of the core PHP distri-
bution. This library is good enough for building clients, but not sufficiently
strong yet for building web service. The proxy definition lines are:

• $service = new nusoap client($urlServ . "?wsdl", true);

//for PHP nusoap

• $service = new SoapClient($urlServ . "?wsdl");

//for any service

The SOAP PHP clients calling services other than PHP nusoap require a
special parameters transmission approach: the developer must create a PHP
object containing the parameters as properties and these are then accessed
either by name or by value.

The SOAP Python clients are the simplest of all. The suds project is a
recently released Python distribution specialized on web service clients. The
suds library creates dynamically a proxy object starting from the WSDL,
without generating any source code. This aspect simplifies significantly the
client implementation.

For writing Android web service clients, the only library available is ksoap2.
Essentially the client requires the WSDL and gets from there the targetNamespace
parameter. If this parameter is not specified, then the client goes directly to
the web service, gets the WSSDL from there and extracts the targetNamespace
from it. This peculiar behavior is necessary because there is a problem in

WEB SERVICE MATCHING 111

the connection to the Python web service. The connection fails if the client
fetches the WSDL from the web service, extracts the targetNamespace pa-
rameter and then starts calling methods. However everything works fine if the
targetNamespace is specified directly to the client. The explanation is that
the Python web service enforces stateless access, which means that a WSDL
delivery closes the connection.

5. REST Case Study

The service used in [2, 5] as example implemented in several programming
languages is used here as well. The fig. 2 presents WADL for describing this
service.

The four web services implement the same functionalities as those in the
previous sections. To support a wider range of examples we choose to make
the upcase method accessible through both GET and POST calls, and the
add method through both PUT and DELETE calls. The implemented web
services are:

• C] using a *.ashx file deployed in an IIS web server.
• Java using the JAX-RS jersey[17] library deployed in a servlet con-

tainer.
• PHP using the Da Silva distribution [6] which offers two objects:
RestServer.php and RestClient.php which support method map-
ping using URL regular expressions.

• Python using the CherryPy [18] library.

The localization of these services is variable, depending on the method
used to pass the parameters: as a query string at the end of a GET method,
in the body of a POST or DELETE method, or as variables in the URL path.

The method registration is done differently among the web service imple-
mentations. In C] the method is given control upon the completion of an
analysis of the path in the HttpContext URL. In Java the methods to be ex-
ported are annotated as such. In PHP the mapping of each method is specified
in the RestServer object. In Python the methods are annotated using the
@cherrypy.expose decorator.

The clients were implemented in: C], Java, PHP, Python, and Android.
Each of them gets the service URL and then the service is accessed sim-
ply over URL connections: HttpWebRequest and HttpWebResponse for C],
HttpUrlConnection in Java, using CURL and possibly the Da Silva RestClient
for PHP, and the standard urllib and httplib modules of Python.

Although these services were built to be equivalent, there is no practical
way to demonstrate their equivalence automatically. To do so, we need to
generate the WADL descriptors and compare them to prove the equivalence.

112 F.M. BOIAN, A. PLOSCAR, AND R.F. BOIAN

Figure 2. WADL descriptor of the Exec web service

WEB SERVICE MATCHING 113

6. Our Proposal

Considering the aspects presented above we propose to extend the WSWrap-
per published in [1], as shown in the fig. 3.

Figure 3. Extended WSWrapper architecture

The main components of this new architecture are:
WSWrapperService processes the WebDescriptorService descriptors

and generates the actual web service for the desired platform.
WSWDescriptor processes WebService objects using reflection (inspec-

tion, introspection) and, depending on the web service type, generates a de-
scriptor of type XRDL, WSDL, or WADL. This is possible because all the
languages involved support reflection, and specifically introspection, which is
essential to the extraction of meta-data, exported methods, and calling paths,
from the web service objects. [12, 13, 15].

WSWHandDescriptor is an auxiliary manual tool which allows the de-
signer to customize the generated descriptor as necessary.

114 F.M. BOIAN, A. PLOSCAR, AND R.F. BOIAN

WSWReverseDescriptor generates source code from a given descriptor
of any of the three supported types: XRDL, WSDL, or WADL. The generated
source code will contain the method prototypes for the web service on a desired
platform.

WSWGenerator [8] generates a static proxy based on a web service
descriptor. The proxy will be specific to the web service it was generated for
and to the platform being used. The proxy is then packaged in a library (i.e.
dll, jar, phar, zip) which will become part of the client.

WSWMatcher takes as input two web service descriptors and detects the
similarities between them, trying to determine whether they match or not.

As web services of different types have different descriptions and even
various WSDL files may eventually have (and often do) different descriptions
for equivalent services we have the following proposition. We describe each
service regardless of the type of the web service in an abstract format that
we will call WSAD (Web Service Description Abstract). This WSAD will
describe only web method name, parameters whose types must comply with
XML types and return type of the method with the same restrictions as for
parameters. Because it is an abstract description of the service, the location
of the web service is not needed.

WSWMatcher takes as input two WSAD files describing two web services
and will compare them syntactically. The matching that we propose is at
a syntactic level, and at this point in our research we do not consider the
semantic. If two services match in a syntactically way we can continue their
matching semantically.

7. Conclusions

The paper presents a detailed analysis of the differences between web ser-
vice implementations on various platforms and the theoretical possibilities for
automatically determining whether web services are matching. The proposed
architecture unifies web service development and eliminates the differences
which get in the way when using the existing frameworks. It also provides
support for automatically detecting web service matching.

References

[1] Boian F., Chinces D., Ciupeiu D., Homorodean D., Jancso B., Ploscar A., WSWrap-
per - A Universal Web Service Generator, Studia Universitatis Babes-Bolyai Series
Informatica, Volum LV, nr. 4, 2010, pp 59-69, ISSN: 2065-9601

[2] Boian F.M., Servicii web; modele, platforme, aplicaii, Ed. Albastra, Cluj, 2011
[3] Boian F.M., A uniform approach to define and implement the web services; case studies

for indexing huge file systems, ZAC2012, pp 85-90

WEB SERVICE MATCHING 115

[4] Boian F.M., Jancso B., Uniform solutions for web services, Studia Universitatis Babes-
Bolyai Series Informatica, Volum LVII, nr. 3, 2012, pp 13-23

[5] Boian F.M., http://www.cs.ubbcluj.ro/ florin/books/SWMPA/*New.zip, 2013
[6] DaSilva S.D., PHP Classes, http://diogok.users.phpclasses.org/browse/author/529977.html
[7] Jancso B., RESTful Web Services, ZAC2010, pp. 158-163
[8] Jancso B., Web Service proxy Generator, ZAC2012, pp 124-129
[9] Khorasgani R.R., Stroulia E., Zaiane O.R., Web service Matching for RESTful Web

Services, http://webdocs.cs.ualberta.ca/ zaiane/postscript/wse2011.pdf
[10] Ploscar A., A Java Implementation for REST-style web service, ZAC2010, pp 140-146
[11] Takase T. Makino S. Kawanaka S. Ueno C.F. Ryman A. Defini-

tion Languages for RESTful Web Services: WADL vs. WSDL 2.0.,
http://www.ibm.com/developerworks/library/specification/ws-wadlwsdl/index.html

[12] * * * http://scripts.incutio.com/xmlrpc/introspection.html
[13] * * * http://xmlrpc-c.sourceforge.net/introspection.html
[14] * * * http://stackoverflow.com/questions/1312087/what-is-the-reason-for-using-wadl/

1314357]1314357
[15] * * * http://www.codeproject.com/Articles/235269/Using-Introspection-in-Java, C]

reflection Java reflection PHP reflection Python inspect
[16] * * * XRDL: XML-RPC Description Language. http://code.google.com/p/xrdl/
[17] * * * http://jersey.java.net/
[18] * * * http://www.cherrypy.org/
[19] * * * http://www.w3.org/Submission/wadl/

(1) Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: florin@cs.ubbcluj.ro

E-mail address: adina ploscar@yahoo.com

E-mail address: rares@cs.ubbcluj.ro

