
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

XRDL: A VALID DESCRIPTION LANGUAGE FOR

XML-RPC

DIANA TROANCĂ(1) AND FLORIAN BOIAN(1)

Abstract. XML-RPC standard does not define any Description Lan-
guage for this web service. XRDL started as an open source project with
the purpose of being XML-RPC Description Language. The open source
project already includes some applications for XRDL (automatic XRDL
generation for servers and clients written in PHP or C++/Qt [3]), but it
has not yet been demonstrated that XRDL can be used as a Description
Language without any exceptions. This paper intends to prove that XRDL
is a valid XML-RPC Description Language, so the focus can move back
on its applicability and further development.

1. Introduction

The purpose of this paper is to demonstrate that XRDL is a valid De-
scription Language for XML-RPC services. This includes the fact that any
XML-RPC service can be described by a XRDL document and that any web
service described by a XRDL document is a valid XML-RPC service. There-
fore the demonstration will consist of two parts.

XRDL [3] started as an open source project. It has not yet been accepted
as a standard and it is not widely accepted as the XML-RPC description
language [8]. Some researchers accept it as XML-RPC Description Language
and others argue its utility. The open source project already implements some
applications for XRDL, but they do not demonstrate the validity of XRDL as
a Description Language for XML-RPC services.

Received by the editors: April 17, 2013.
2010 Mathematics Subject Classification. 03B48, 03F60.
1998 CR Categories and Descriptors. H.3.5 [Information Storage and Retrieval]:

Online Information Services – Web-based services;
Key words and phrases. XRDL, XML-RPC, Web Services.
This paper has been presented at the International Conference KEPT2013: Knowledge

Engineering Principles and Techniques, organized by Babeş-Bolyai University, Cluj-Napoca,
July 5-7 2013.

90

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 91

XRDL is defined by a XSD-schema that describes the structure of a XRDL
valid document. As defined in the XSD-Schema it has two wide sections for
describing the service:

• a section where complex types used by the service can be defined and
• a section that describes the methods that the service offers.

In the types section of a XRDL document we can define complex types
used by the web service. The second section describes all the methods offered
by the service with the parameters needed and the result that the method
will return. The data type of the parameters and the result is specified using
the ”type” attribute. According to the definition of XRDL the value of this
attribute is a string. In order to generate a valid XML document it can take
any value that represents a valid data type in XML, but XML has a lot of
built-in data types.

The specification of XML-RPC [4] defines six simple types and two com-
pund types that can be defined as a collection of more simple or compound
elements. The basic data types are presented in Table 1 [5, 8].

Table 1. XML-RPC Data Types

Type Value Example

int or i4 32-bit integers
<i4>35</i4>

<int>2</int>

double 64-bit floating-point numbers <double>-3.456</double>

boolean 0 (false) or 1 (true) <boolean>0</boolean>

string ASCII text or Unicode <string>How are you</string>

dateTime.iso8601
Dates in the following format:

CCYYMMDDTHH::MM:SS
<dateTime.iso8601>20130903T13:11:05

</dateTime.iso8601>

base64
Binary data encoded as

base 64 (as defined in RFC 2045)
<base64>base64 encoded data.

</base64>

The two compound types used by XML-RPC are array and struct. Array
is a sequence of elements with the same or with different types. The struct data
types are defined as pairs in form of name-value and are similar to hashtables.

For the purpose of this paper, we cannot allow the type attribute to take
any valid XML value. For example, if we have an element with type=”decimal”,
we have no equivalent for that particular type in XML-RPC [6, 7]. Taking all
this into consideration we will add a restriction to XRDL. The type attribute
from a valid XRDL can have as a value either a simple data type that is also
defined in the XML-RPC specification or a complex type that is defined in
the types section of that XRDL document. We will prove in the next para-
graphs that the compound data types from the XML-RPC specification can
be defined in XRDL as a complex type using the simple types available.

92 DIANA TROANCĂ AND FLORIAN BOIAN

2. XML-RPC described by a XRDL document

The first part of the equivalence is to prove the following Theorem:

Theorem 2.1. Any XML-RPC can be characterized by a XRDL document.

The characterization of a web service consists of describing the methods
offered by that service. In order for a potential user to know how to call the
methods, he needs to know the name of the function, the input of the function
(the parameters) and the result that it returns [4]. XRDL has a simple way of
describing the functions of a web service, defined in the following part of the
XSD document:

<xs:element name="methods">

<xs:complexType>

<xs:sequence>

<xs:element name="method" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="param" minOccurs="0" maxOccurs="unbounded">

<xs:complexType mixed="true">

<xs:attribute name="type" type="xs:string" use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="result" type="xs:string" />

<xs:attribute name="name" type="xs:string" />

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

From that schema we can see that any method can be described in XRDL and
the demonstration in this case comes down to proving that any data type from
XML-RPC has an equivalent in XRDL. Moreover, considering the restriction
we put on the XRDL type attribute, we still have to prove that the compound
types from XML-RPC can be defined in XRDL.

In the following Sections we will discuss the two compound data types
array and struct.

The array type in XML-RPC contains an element named data that has
one or more children. These children are each defined by a value tag which
contains another tag specifiying the data type and the value. An array can
be unidimensional if it contains only elements of simple data types or multi-
dimensional if it also contains elements of other compound types.

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 93

Lemma 2.2. A onedimensional array with n elements can be defined as a
data type in XRDL, ∀n ∈ N.

We will prove Lemma 2.2 using an induction argument. For the case n=1,
an array with one element will have the following general form:

<array>

<data>

<_simpleType>_customValue</_simpleType>

</data>

</array>

simpleType will be replaced by any of the types: string, int/i4, double,boolean,
dateTime.iso8601 or base64 and customValue will be replaced by a suitable
value according to the data type chosen. In XRDL we define a complex data
type:

<type name="_1_ElementArray">

<member type="_simpleType"> _firstMember</member>

</type>

1 ElementArray is the name given to the custom data type, simpleType is
the same type used in the XML array and firstMember is the name given to
the member of the array (Obs. The names given to the data type or to the
members are irrelevant). As we can see this custom type is equivalent to the
array given in XML. For the inductive step we assume that a onedimensional
array with k elements can be defined as a complex type in XRDL. We have
to prove that a onedimensional array with k+1 elements can be defined as a
complex type in XRDL. Let the k+1-length array be:

<array>

<data>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

<value>

<_simpleType_2>_value_2</_simpleType_2>

</value>

...

<value>

<_simpleType_k>_value_k</_simpleType_k>

</value>

<value>

<_simpleType_k+1>_value_k+1</_simpleType_k+1>

</value>

</data>

</array>

94 DIANA TROANCĂ AND FLORIAN BOIAN

If we build an array containing only the first k elements, acoording to the
induction hypothesis that array can be expressed as a complex type in XRDL
as follows:

<type name="_k_ElementArray">

<member type="_simpleType_1">_ member_1</member>

<member type="_simpleType_2">_ member_2</member>

...

<member type="_simpleType_k-1">_ member_k-1</member>

<member type="_simpleType_k"> _member_k</member>

</type>

Now we can build a similar array with k+1 elements just by extending this
type with one more element:

<type name="_k+1_ElementArray">

<member type="_simpleType_1">_ member_1</member>

<member type="_simpleType_2"> _member_2</member>

...

<member type="_simpleType_k-1">_ member_k-1</member>

<member type="_simpleType_k"> _member_k</member>

<member type="_simpleType_k+1">_ member_k+1</member>

</type>

This is the k+1-length array that we had to transcribe in XRDL and in con-
clusion the hypothesis is proven for any n ∈ N.

Now we will consider multi-dimensional arrays, which are arrays that con-
tain other arrays or struct elements.

Lemma 2.3. A n-dimensional array can be expressed in XRDL as a complex
data type, for any n ∈ N.

An example of a two-dimensional array is:

<array>

<data>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

<value>

<array>

<data>

<_simpleType_2>_value_2</_simpleType_2>

<_simpleType_3>_value_3</_simpleType_3>

</data>

</array>

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 95

</value>

</data>

</array>

Before proving this hypothesis let us treat the second compound data type
struct.

The struct type in XML-RPC contains a sequence of elements of type
member. Each member has two children name and value. The value tag has
another child that specifies the data type of that member and the actual value.
A struct can also be multidimensional if it contains other elements of compund
data types.

Lemma 2.4. A onedimensional struct with n pairs of elements name-value
can be defined in XRDL as a complex type, for any n ∈ N.

For the base case we define the general form of a struct with one pair of
elements name-value:

<struct>

<member>

<name>_member_1</name>

<value>

<_simpleType>_value_1</_simpleType>

</value>

</member>

</struct>

where simpleType will be replaced by any of the types: string, int/i4, double,
boolean, dataTime.iso8601 or base64. In XRDL we define a complex type
accordingly:

<type name=_1_PairStruct>

<member type="string">_member_1</member>

<member type="_simpleType">_value_1</member>

</type>

For the inductive step we assume that a onedimensional struct with k pairs of
elements can be defined as a complex type in XRDL. We still have to prove
that a onedimensional struct with k+1 pairs of elements can also be defined
in XRDL. Let the struct with k+1 pairs of elements be:

<struct>

<member>

<name>_member_1</name>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

</member>

...

96 DIANA TROANCĂ AND FLORIAN BOIAN

<member>

<name>_member_k</name>

<value>

<_simpleType_k>_value_k</_simpleType_k>

</value>

</member>

<member>

<name>_member_k+1</name>

<value>

<_simpleType_k +1>_value_k+1</_simpleType_k+1>

</value>

</member>

</struct>

If we consider the first k pairs of this struct they would build another struct
but with k pairs of elements, which according to the earlier assumption can
be defined in XRDL as a complex type. Let that type be k PairStruct :

<type name="_k_PairStruct">

<member type="string">_member_1</member>

<member type="_simpleType_1">_value_1</member>

...

<member type="string">_member_k-1</member>

<member type="_simpleType_k-1">_value_k-1</member>

<member type="string">_member_k</member>

<member type="_simpleType_k">_value_k</member>

</type>

Taking this into consideration we can build another complex type just by
extending this type with two other members:

<type name="_k_PairStruct">

<member type="string">_member_1</member>

<member type="_simpleType_1">_value_1</member>

...

<member type="string">_member_k</member>

<member type="_simpleType_k">_value_k</member>

<member type="string">_member_k+1</member>

<member type="_simpleType_k+1">_value_k+1</member>

</type>

And this is exactly the definition of our struct with k+1 pairs. So the hypoth-
esis is proven for any n ∈ N.

Now we go back to the demonstration of Lemma 2.3. For the base case we
observe that a two-dimensional array would have to contain at least an element
of a one-dimensional compound type and all the another elements can either
be of a simple type or of a one-dimensional compound type. But we have
already proven in Lemma 2.3 and Lemma 2.4 that any one-dimensional array

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 97

or struct can be defined in XRDL as a complex type. The next step would be
to define another complex type in XRDL to build this two-dimensional array.
The general form of a two-dimensional array in XRDL is:

<type name="_twoDimensionalArray">

<member type="_type_1">_member_1</member>

<member type="_type_2">_member_2</member>

...

<member type="_type_m">_member_m</member>

</type>

where type i is a simple type or a one-dimensional compund type for each
i ∈ {1, 2, ...,m} and there is at least one j ∈ {1, 2, ...,m} so that type j is a
one-dimensional array or struct. The base case for the hypothesis in Lemma
2.3 is obviously true. For the inductive step we assume that any k-dimensional
array can be defined in XRDL. We observe that a k+1-dimensional array has
l-dimensional elements with 1 ≤ l ≤ k. The inductive assumption says that
for each element of this array we can define a complex type in XRDL, so for
defining the k+1-dimensional array we can just build a complex type with
elements of those types defined before.

For multi-dimensional struct we consider the following Lemma:

Lemma 2.5. A n-dimensional struct can be expressed in XRDL as a complex
data type, for any n ∈ N.

The exact same reasoning from Lemma 2.3 can be applied for proving
this hypothesis with the observation that one member of the new added pair
will always be of type string (the name of that pair) and the other member
representing the value can be of any multi-dimensional compound type or of
a simple type.

3. XRDL document as a valid XML-RPC service

This Section will consist of the demonstration for the following Theorem:

Theorem 3.1. Any XRDL document describes a valid XML-RPC web service.

As we have seen in Section 2 the structure of a XRDL document allows
it to describe the methods of a web service and if necessary define compound
data types. In XRDL the service methods are described by their name, input
and output data. We can conclude that any method described is a valid
XML-RPC method if the input and output data types are valid XML-RPC
data types. Considering the restriction we added to XRDL in Section 1, any

98 DIANA TROANCĂ AND FLORIAN BOIAN

simple type defined in XRDL will be a valid data type in XML-RPC. So we
have to prove the following Lemma:

Lemma 3.2. Any compound data type defined in XRDL is a valid XML-RPC
type.

For the proof of this Lemma we will assume that the XRDL document
respects certain naming conventions specified in the following Proposition:

Proposition 3.3. The XRDL compound types defined to describe the XML-
RPC struct type will reflect the pairs of the struct by a naming convention: one
member will always be of type string and its name will start with ” member”
and the following member will be of any valid type and its name will start
with” value”. The XRDL compound types defined to describe the XML-RPC
array type will only contain members named with the word ” member”.

This Proposition ensures the fact that the compound data types defined in
XRDL reflect the equivalent complex type from XML-RPC (struct or array).
Otherwise this compound types could not be differentiated, since both XML-
RPC complex types, struct and array, are transcribed in XRDL as a compound
data type with an enumeration of members without any structural difference
between them.

Considering Proposition 3.3 we can divide the demonstration of Lemma
3.2 into two parts, treating the compound types that contain members named
with ” member” and ” value” separately from the other compound types.

The first case we treat is for compound types that contain members named
with ” member” and ” value”. We consider the following Lemma:

Lemma 3.4. A compound type from an XRDL document that contains mem-
bers named with ” value” and has only members of a simple type can be tran-
scribed in XML-RPC into an element of type struct.

From the hypothesis of Lemma 3.4 we deduce that the compound element
will have the general form:

<type name="_compoundElement_n">

<member type="string">_member_1</member>

<member type="_simpleType_1">_value_1</member>

...

<member type="string">_member_n</member>

<member type="_simpleType_n">_value_n</member>

</type>

where simpleType i, for ∀i = 1, n, will be replaced by any of the types: string,
int/i4, double, boolean, dataTime.iso8601 or base64.

For the proof of Lemma 3.4 we will use an induction for n ∈ N. For the
base case n=1 we have a compound element in the form of:

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 99

<type name="_compoundElement_1">

<member type="string">_member_1</member>

<member type="_simpleType_1">_value_1</member>

</type>

This can be transcribed in XML-RPC as a struct element as follows:

<struct>

<member>

<name>_member_1</name>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

</member>

</struct>

For the inductive step we assume that Lemma 3.4 is true for n = k, meaning
a compound type with 2 ∗ k members can be transcribed as a struct element.
Let the compound type be:

<type name="_compoundElement_k">

<member type="string">_member_1</member>

<member type="_simpleType_1">_value_1</member>

...

<member type="string">_member_k</member>

<member type="_simpleType_k">_value_k</member>

</type>

and the equivalent struct element:

<struct>

<member>

<name>_member_1</name>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

</member>

...

<member>

<name>_member_k</name>

<value>

<_simpleType_k>_value_k</_simpleType_k>

</value>

</member>

</struct>

We observe that for the step k+1 the compound type will be:

<type name="_compoundElement_k+1">

<member type="string">_member_1</member>

100 DIANA TROANCĂ AND FLORIAN BOIAN

<member type="_simpleType_1">_value_1</member>

...

<member type="string">_member_k</member>

<member type="_simpleType_k">_value_k</member>

<member type="string">_member_k+1</member>

<member type="_simpleType_k+1">_value_k+1</member>

</type>

Considering the equivalent struct for the compound type with 2 ∗ k members
we observe that in this case we can extend that struct by one more member
in order to get an equivalent for this compund type. So we transcribe it into
the following struct:

<struct>

<member>

<name>_member_1</name>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

</member>

...

<member>

<name>_member_k</name>

<value>

<_simpleType_k>_value_k</_simpleType_k>

</value>

</member>

<member>

<name>_member_k+1</name>

<value>

<_simpleType_k+1>_value_k+1</_simpleType_k+1>

</value>

</member>

</struct>

This structure is a valid element in XML-RPC. This concludes the proof of
Lemma 3.4.

As a generalization for Lemma 3.4 we have:

Lemma 3.5. A compound type from an XRDL document that contains mem-
bers named with ”value” can be transcribed in XML-RPC into an element of
type struct.

We observe that Lemma 3.5 looses the restriction from Lemma 3.4 that
specified that members can only be of a simple type. To prove Lemma 3.5 we

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 101

need to treat the cases of compound types that contain elements of another
compound type.

Before proving Lemma 3.5 we need to treat the case of compound types
that have equivalents in XML-RPC array elements. Let us consider the fol-
lowing Lemma:

Lemma 3.6. A compound type from an XRDL document that contains only
members named with the word ” member” and that has only members of a
simple type can be transcribed in XML-RPC into an element of type array.

Given the hypothesis of this Lemma the general structure of the compound
element is:

<type name="_n_compoundArrayElement">

<member type="_simpleType_1">_member_1</member>

...

<member type="_simpleType_n">_member_n</member>

</type>

where simpleType i, for any i = 1, n, will be replaced by any of the types:
string, int/i4, double, boolean, dataTime.iso8601 or base64. Let us prove
this Lemma by applying an induction on n, the number of members of the
compound type. For the base case n = 1 we have the following compound
type:

<type name="_1_compoundArrayElement">

<member type="_simpleType_1">_member_1</member>

</type>

This can be described in XML-RPC as an array element as follows:

<array>

<data>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

</data>

</array>

For the induction step we assume that a compound element with k members
can be described in XML-RPC as an array element and prove that we can also
describe a compound element with k+1 members. Let the compound element
with k members be:

<type name="_k__compoundArrayElement">

<member type="_simpleType_1">_member_1</member>

...

<member type="_simpleType_k">_member_k</member>

</type>

and let its equivalent in XML-RPC be:

102 DIANA TROANCĂ AND FLORIAN BOIAN

<array>

<data>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

...

<value>

<_simpleType_k>_value_k</_simpleType_k>

</value>

</data>

</array>

We have to prove that we can find an equivalent array element in XML-RPC
for a compound type from XRDL with k+1 members. Let that compound
type be:

<type name="_k__compoundArrayElement">

<member type="_simpleType_1">_member_1</member>

...

<member type="_simpleType_k">_member_k</member>

<member type="_simpleType_k+1">_member_k+1</member>

</type>

We observe that, considering only the first k members of this compound type,
we can build an array in XML-RPC given the previous assumption. We can
easily extend that array by one element to obtain an equivalent array for the
compound type with k+1 members:

<array>

<data>

<value>

<_simpleType_1>_value_1</_simpleType_1>

</value>

...

<value>

<_simpleType_k>_value_k</_simpleType_k>

</value>

<value>

<_simpleType_k+1>_value_k+1</_simpleType_k+1>

</value>

</data>

</array>

This concludes the induction that proves Lemma 3.6.
Now we can go back to prove Lemma 3.5. As we mentioned before, in order

to prove Lemma 3.5, we need to demonstrate that compound types containing

XRDL: A VALID DESCRIPTION LANGUAGE FOR XML-RPC 103

members named with the word ” value” and that contain elements of another
compound type have equivalents in XML-RPC as an element of type struct.

We observe that a compound type element can include recursively mem-
bers of other compound types. In the following example 1 compoundArrayElement1
includes 1 compoundArrayElement2 :

<type name="_1_compoundArrayElement1">

<member type="_1_compoundArrayElement2">_member_1</member>

</type>

<type name="_1_compoundArrayElement2">

<member type="_simpleType_1">_member_1</member>

</type>

We define the dimension of a compound type as the number of compound
types involved recursively (including the defined compound type itself) in
the definition of that particular compound type. In the previous example
1 compoundArrayElement1 has dimension 2 and 1 compoundArrayElement2

has dimension 1.
The proof for Lemma 3.5 can be understood as an induction on n ∈ N,

where n represents the dimension of the compound type. We observe that
Lemma 3.4 can be seen as a particular case for Lemma 3.5 with n = 1. So
the base case for the induction is proven by Lemma 3.4. Furthermore, we
know that in XML-RPC we can recursively define elements of type struct
with any finite dimension. Considering the previous observations a simple
induction step proves that any k-dimensional compound type that respects the
hypothesis in Lemma 3.5 can be described in XML-RPC as a k-dimensional
element of type struct. This concludes the proof for Lemma 3.5.

Finally, we consider the following Lemma that treats the general case for
Lemma 3.5 without the restriction that members can only be of a simple type.

Lemma 3.7. A compound type from an XRDL document that contains only
members named with the word ” member” can be transcribed in XML-RPC
into an element of type array.

The exact same reasoning used in proving Lemma 3.5 can be applied for
proving Lemma 3.7 with the observation that the XML-RPC type array can
be n-dimensional for any n ∈ N.

4. Conclusions and future work

Sections 2 and 3 demonstrate that any XML-RPC document can be de-
scribed by a XRDL document and any XRDL document that respects the
restrictions mentioned in this article will also describe a valid XML-RPC ser-
vice. This leads to the conclusion that XRDL is a valid Description Language
for XML-RPC. The higher motivation of this demonstration is to be able to

104 DIANA TROANCĂ AND FLORIAN BOIAN

use XRDL for Web Service Matching [10] and for automatic generation for
servers and clients written in different programming laguages.

In a future article we plan to propose an extension to the XSD of XRDL,
so that it reflects the restrictions imposed on the type attribute in Section 1
of this article.

Many researchers still argue the utility of XRDL as a Description Language
for XML-RPC web services. This paper started to prove its utility by proving
it is a valid Description Language for XML-RPC services.

For future work we plan to exploit further utilities of XRDL. We will study
ways of generating the XRDL description automatically[1]. Furthermore we
will find ways of generating a XML-RPC service skeleton using the correspond-
ing XRDL description and ways of generating a client that calls the methods
of the XML-RPC service described in a XRDL document[2].

References

[1] F. Boian, B. Jancso, Uniform Solutions for Web Services, Studia Univ. Babe-Bolyai,
vol. 57, no. 3, 2012

[2] F. Boian, D. Chice, D. Ciupeiu, D. Homorodean, B. Jancso, A. Ploscar, WSWrapper
A Universal Web Service Generator, Studia Univ. Babe-Bolyai, vol. 55, no. 4, 2010

[3] XRDL Project Home, http://code.google.com/p/xrdl/
[4] XML-RPC Specification, http://xmlrpc.scripting.com/spec.html
[5] XML-RPC Data Model, http://www.tutorialspoint.com/xml-

rpc/xml rpc data model.htm
[6] XML-RPC, Ken Slonneger, 2006, http://homepage.cs.uiowa.edu/ slonnegr/xml/10.XML-

RPC.pdf
[7] XML Schema Tutorial, http://www.w3schools.com/schema/
[8] XML-RPC, http://en.wikipedia.org/wiki/XML-RPC
[9] XML Matters: XML-RPC as object model, David Mertz, 2001,

http://www.ibm.com/developerworks/xml/library/x-matters15/index.html
[10] F.M. Boian, A. Ploscar, R.F. Boian, Web Service Matching, Knowledge Engineering

Principles and Techniques, Proceedings of the International Conference on Knowledge
Engineering, Principles and Techniques, KEPT 2013 Cluj-Napoca (Roamania), July
4-6, 2013, this volume

(1) Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: dianatroanca@yahoo.com

E-mail address: florin@cs.ubbcluj.ro

