
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

A SERVER-SIDE SUPPORT LAYER FOR CLIENT

PERSPECTIVE TRANSPARENT WEB CONTENT

MIGRATION

DARIUS BUFNEA(1) AND DIANA HALIŢĂ(1)

Abstract. The migration process of a website’s content within a Content
Management System almost always implies changes in the site structure
as seen by search engines and web clients. This variation leads to some
disadvantages, such as misdirecting search engines visitors to old, unavail-
able, URLs. Even if, over time, search engines adapt to changes in the
site’s structure, the problem remains unsolved for visitors landing from
3rd party referrers. This paper presents a server-side support layer for
client perspective transparent web content migration, layer that automat-
ically maps the old visible structure of a website to the new one implied
by the migration process. Some of the advantages of such a mechanism
are: reducing incoming dead links from 3rd party referrers, assisting search
engines for properly redirecting users or page rank and SERP conservation.

1. Introduction

In today’s Internet, more and more web sites are being built using a Con-
tent Management System (CMS). From the top one million websites, as classi-
fied by Alexa.com, 22.5% of them are built on a CMS platform and WordPress
occupy a percentage of 12.4% of the total[1]. And these numbers continue to
grow. More and more websites are being powered by Content Management
Systems, among their advantages, we can highlight the following:

Received by the editors: April 16, 2013.
2010 Mathematics Subject Classification. 68U35 - Information systems, 68M11 - Internet

topics.
1998 CR Categories and Descriptors. H.5.3 [Information Interfaces and Presenta-

tion]: Group and Organization Interfaces – Web-based interaction; H.5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia – Navigation .

Key words and phrases. CMS migration, web content migration, transparent 404 not
found redirection.

This paper has been presented at the International Conference KEPT2013: Knowledge
Engineering Principles and Techniques, organized by Babeş-Bolyai University, Cluj-Napoca,
July 5-7 2013.

78



A SERVER-SIDE SUPPORT LAYER FOR WEB CONTENT MIGRATION 79

• Easy maintenance: content’s maintainer must not have knowledge of
design / HTML, he does not need to be a web programmer to handle
website’s content;

• Consistency of design is preserved: the content from all authors is
presented with the same, consistent design;

• Easy migration from one presentation to another, from one design to
another: site’s graphic can be changed without need of rebuilding the
website;

• Regular security updates;
• Full control over the elements related to search engine optimization.
Content freshness is a factor that helps a lot because search engines
prefer a site with a content updated on a daily or at least weekly basis;

• Multiple roles for users with different levels of rights;
• Additional functionality offered: 3rd party plugins;
• Web based administration: editing anywhere, anytime removes bottle-
necks;

• Sites are self-organized based on categories, pages, post links. Navi-
gation is automatically generated adjusted: site’s menus are typically
generated automatically based on the database content and links will
not point to non-existing page.

All above advantages are the main reasons that more and more websites
are being built based on a Content Management System. More over, based
on the same favors, old sites built on static technologies are being migrated
within a CMS, considering also the scalability of such a system.

There are also situations, when a CMS based web site must be migrated
to a different, new CMS. In many cases, the current CMS can not support
new goals or does not have all the functionality or features needed to achieve
them. Migrating from one CMS to another is necessary from several points of
view:

• the old CMS might be considered deprecated;
• there is the possibility of choosing an open source CMS granting easier
access to support;

• CMS scalability;
• highlighting the newest web technologies: CSS3, Ajax, HTML5.

2. Migration process challenges

Migration of a web site to a new CMS can be done either manually or
automatically. In the case of a static technologies based web site, the migration
process will involve most likely manual operations. On the contrary, migration
between two popular CMS will imply some automatically performed actions.



80 DARIUS BUFNEA AND DIANA HALIŢĂ

The migration process it’s not only a problem related exclusively to con-
tent migration. One of the most difficult part of migrating to a new CMS is
mapping the old content to a new one, in addition to mapping the old logical
organization model to the new one as required by the new CMS.

The complexity of the migration process can have a gradual solution, fol-
lowing three steps: dividing the content into categories, estimating needed
time for migration and migration reevaluation based on guidance.

The first step of the migration process is about classifying different types
of content, depending on the outcome of its analysis and derived types - these
types shall mean all categories in which the content is subdivided. This creates
two types of rules that must be identified: those rules which relate specifically
to particular content, needed also after migration, and rules relating to what
can and what can not be automatically migrated. These rules are useful in
defining the priorities and the efforts which must be made. At this point, a
decision can be taken about what can be automatically migrated and what
can’t. Generally it is desired to automate as much of the content that must
be migrated.

The second step is about guiding and estimating migration needed time,
i.e. compare automatic migration with manual migration required time.

The final step involves evaluating the automatic migration process. The
biggest problem which arises when choosing automatic migration is content’s
structure and its regularity. On the other hand, manual migration to another
CMS requires in some cases viewing, editing and manually moving the content,
which probably will lead to a waste of resources, time and effort.

How difficult is migration of a website’s content within a CMS or from one
CMS to another?

• Competition between CMS providers translates into a difficult transi-
tion between them.

• Using the same CMS for many years makes migration difficult; a con-
sequence could be the ability to run an inconsistent code.

• Consolidation content management platforms in a single system can
be logistically a nightmare.

• Content that is meant to be migrated is not limited to text / html, but
may include graphic content resources (images), multimedia content,
which does not appear in the database structure (that graphic content
resides as a file in a file system).

• In some cases, content migration is hindered by its organization. For
example, a page in PHP Website is organized as sections reunion, in-
cluding an order relation which is timeless. Such multisection page



A SERVER-SIDE SUPPORT LAYER FOR WEB CONTENT MIGRATION 81

turns naturally into a series of temporal posts (lacking a time at-
tribute).

• Once the content migration is complete, it is necessary to change in-
ternal link’s meaning, so that it would point to the appropriate page
from the new site structure.

• If the site is very dynamic, i.e. the information on it are updated
regularly, what happens when the site is in a state of transition? Time
spent on updates will be doubled, the information must be renewed
also in the old site and the new one (which has not yet been released).

• The new site structure will not be instantly visible in Internet by search
engines; however search engines have the ability to adapt (sooner or
later) to this new structure. On the other hand, third party referrers
that link to the migrated website probably will never adapt to the new
site structure, this operation implying manual intervention.

The migration process implies not only moving the content within the new
CMS, the migration, either automatically or manually performed, should also
take into consideration the transparent behavior of the web site from visitor
perspective, either a web browser or a search engine crawler. One common
problem induced by such a migration is exposing to the web a certain content
to a new, different URL as it was presented in the old site. After migration,
this will be reflected in lots of misleading visitor coming from search engines
or third party referrers. Besides not serving the proper content to visitors, the
newly migrated website can lose page rank or other in-time gather benefits
induced by back links or social shares. This paper presents a server-side sup-
port layer for client perspective transparent web content migration, layer that
automatically maps the old visible structure of a website to the new one im-
plied by the migration process. Some of the advantages of such a mechanism
are: reducing incoming dead links from 3rd party referrers, assisting search
engines for properly redirecting users or page rank and SERP conservation.

Similar solutions as the one presented in this paper to the above problems
have been proposed and implemented, mostly as plugins, inside all major CMS
today ([5], [6], [7]). However, these solutions, in order to properly redirect a
user or a crawler in case of a 404 not found request, only take into consideration
some in-time gather data based on user behavior, such as target or exit pages
in users’ session or users’ chosen pages from a custom search that follows the
404 response. Our server-side support layer is trying to match new URLs to
old ones based on content similarity, or other semantic related information
such as: URLs, the query given to the search engines or referrer’s content
similarity with the linked content. Also, such a solution has the advantage



82 DARIUS BUFNEA AND DIANA HALIŢĂ

of being implementable prior to the release of the new web site, having no
dependence on in-time gather statistical data based on user behavior.

3. Types of content migration

The following formal notations are general enough for any CMS (or static
content website) to any CMS migration, but we’ll highlight them on our real
life scenario CMSes implied in the migration process: phpWebsite as the source
CMS and Wordpress as the target CMS.

The content which appears both in the old site and in the new site, is
presented in two different ways. We are dealing either with static content
(i.e. a file that exists in the file system of the web server, usually an external
resource such as a .pdf or .jpg file) or with dynamic content, taken from a
CMS’ database.

A) Static content migration. When we migrate such a content, even if its
URL is changing, the base name of the file remains the same.

Example:

oldsiteURL: http://oldsite/oldpath/filename

newsiteURL: http://oldsite/newpath/filename

We define it as perfect match, similarity(oldsiteURL, newsiteURL) = 1.

B) Dynamic content migration. We describe the content which is found
either at an old or new URL as consisting of two parts. The first part is
represented by the content corresponding to the page template (i.e. the master
page), and the second part is the absolute content which is usually stored in
the database. Actually, the absolute content is the one being migrated. When
comparing the similarity of old and new content, we’ll take into discussion
only the absolute content, in order to avoid the noise induced in the similarity
algorithm by the master pages’ HTML code.

Example:
For Wordpress the absolute content can be extracted either from the data-

base or directly from its associated URL. Within a Wordpress’ master page,
the absolute content can be retrieved as the inner HTML of the div having
the content id.

We’ll designate by OP and by NP a page from the old site and a page from
the new site, respectively. In Wordpress, absolute content is represented by:

• pages NP¬T (timeless articles, i.e. pages)
• posts NPT (temporal articles, i.e. posts)
• reunion of posts (i.e. a category)



A SERVER-SIDE SUPPORT LAYER FOR WEB CONTENT MIGRATION 83

• subset of posts in a category

In phpWebsite, absolute content is represented by:

• single section page: OPSS . Such a page is usually migrated in a NP¬T .
• multiple section page: OPMS =

∪
content(sectioni). Such a page is

migrated either in a single NP¬T , if its sections are time independent,
or each of its sections becomes a separate post NPT tagged in the
same category. The migration of the temporal posts in Wordpress has
encountered difficulties because at least in phpWebsite, its data model
stores no time related information, in relation to the date of creation
or modification of a page section.

When we compare the similarity of a content from the old site which cor-
responds to a page with multiple sections (page which in terms of presentation
is shown as a category of posts in the new site) it is useful to compare the sim-
ilarity of the absolute content of the old site content with the absolute content
(in the new site) of a subset of posts in that category. The substantiation for
this claim is presented in section 4 of our paper.

C) A static content of the old site, especially an HTML file, is migrated
as dynamic content within the new CMS. This is useful for integrating file’s
content in the new look and feel of site. In this situation, the similarity function
should be computed based on the absolute content from the new site and on
the file’s content from the old site.

A possible approach when we have to migrate a site between two CMSes
would be to compare the absolute content within the databases maintained
by the two CMSes. We have rather prefer to determine the absolute content
or the custom content involved in the similarity comparison based on its web
presentation because:

• This method is more general, in comparison with the one which ef-
fectively compares content from databases. It can also be taken into
consideration when migrating a static web site.

• We would not cover cases listed above.
• There are no additional privileges required, for examples access rights
to the CMS database. Querying content via its web presentation URL
is much easier since no knowledge is required about the organization
model or the database structure of the CMS.

• Matching process should be done from the web client perspective.

4. Algorithm and implementation

This section of our paper presents the algorithm (and its implementation
details) used for matching old site URLs to new ones. In order to match
these URLs, our algorithm makes use of a similarity function, but the method



84 DARIUS BUFNEA AND DIANA HALIŢĂ

is not dependent of a certain similarity function. Future work may imply
comparison of the results obtained with different similarity functions, from
their speed and matching accuracy point of view. Our approach is general
enough to be applied to any similarity function, or to allow the replacement
of this function with minimal effort.

Information processing is not done in real time (i.e. while the user gets
a 404 not found response). Rather than trying a real time computation, we
choose instead a batch processing approach: a previously run program imple-
ments a similarity algorithm in order to identify URLs with similar content.
There are several reasons to do this. First of all, in both sites there are thou-
sands of valid URLs. This would imply that the complexity of the algorithm
to be at least equal to the cardinal of the cartesian product of the two sets:
old site’s and new site’s URLs. Running a real time computation will induce
delays in serving a response to the web client. Secondly, the batch program
runs completely independent of the CMS core, its language of implementation
does not necessarily depend on an API exported by the CMS.

For a quick match we use the cosine similarity algorithm [3]. This algo-
rithm has a fast and well-implemented implementation within Apache Lucene
[2]. Apache Lucene is a high-performance, full-featured text search engine li-
brary that provides a fast and tested implementation for at least the similarity
algorithm. It is an open source project available for free download. Moreover,
its API allows users to modify the function used in the similarity algorithm
by implementing matching providers, in order to get better or faster results
when comparing two absolute contents.

The formal presentation of the algorithm implemented by the batch pro-
cess follows:
For each oldsiteURL having static content do

Identify the newsiteURL which points to the same static)

content (based on base filename) (section 3, A)

If this newsiteURL was identified then

eliminate the oldsiteURL from the URLs list which must be processed

EndIf

EndFor

For all unprocessed oldsiteURLs do

If it is a static content URL then

absolute content = the effective content (section 3, C)

else

absolute content = content(oldsiteURL) - content(page template)

(section 3, B)

EndIf

Identify the newsiteURL so the absolute content has the best



A SERVER-SIDE SUPPORT LAYER FOR WEB CONTENT MIGRATION 85

similarity with the oldsiteURL’s absolute content

The matching pair is inserted in a table, together with the current

date, the similarity and the best similarity ever

EndFor

One might wonder why we stored in a database the current similarity
and also the best similarity ever. A category evolves in time, because new
announcements might appear in it. In such a case, the similarity obtained
when comparing the category presentation URLs is decreasing. We will have
maximum similarity if we make the comparison with a subset of older an-
nouncements (i.e. the newest announcements from the old site).

Example: In Student News category, semantically speaking, a visitor might
want to see the newest articles and he may want to be redirected to the newest
ones, not to a snapshot page that match perfectly (from the content point of
view) the news in the way they appear in the old site.

In order to speed up the running time, a threshold experimentally deter-
mined can be used. If the similarity of two compared URLs is greater than
a threshold, both old and new URLs can be removed from their sets and not
get used anymore in the comparison process.

The deployment of the results map in a real live situation such as a pro-
duction web site, was done directly in the Apache configuration file (i.e. the
appropriate .htaccess or *.conf file) using the Redirect permanent directive
[4]. This method guarantees the independence of the CMS and its technology.
Another advantage is the fact that this file can be deployed by the user for
most web hosting service providers.

More over, this Apache configuration file can be overwritten after future
runs of the algorithm and it can be easily integrated in the web client ->

web server -> web application -> backend database server workflow, prac-
tically without any intervention to the new CMS configuration, core, plugins
or content.

5. Results and evaluation

In order to demonstrate the benefits of our approach we have performed
some experiments related to the number of not found (i.e. 404 HTTP response
code) pages requested by users landing on our site from an external referrer.
By external referrer we understand either a search engine or a 3rd party referrer
that links our site. These experiments were run for 30 days, both on the old
site before migration and on the new site as well.

The number of not found requests addressed to our test site before migra-
tion was relatively small, around 1.9% of the request from an external referrer



86 DARIUS BUFNEA AND DIANA HALIŢĂ

Figure 1. Old site: number of
pages accessed from external refer-
rer and number of not found pages
accessed from external referrer

Figure 2. Old site: percent of not
found pages accessed from external
referrer

generating a 404 response (Fig. 2). These responses where mainly generated
for requests coming from a 3rd party referrer.

Figure 3. New site: number of
pages accessed from external refer-
rer and number of not found pages
accessed from external referrer

Figure 4. New site: percent of not
found pages accessed from external
referrer

After migration, the number of not found requests made via an external
referrer increased naturally to an average of 11.2% for 30 days (Fig. 4). Search
engines are quickly adapting to modifications in a site’s structure, about one
week after migration they were correctly redirecting the traffic to proper land-
ing pages (Fig. 5, Fig. 7).



A SERVER-SIDE SUPPORT LAYER FOR WEB CONTENT MIGRATION 87

Figure 5. New site: adaptation of
the search engines to the new struc-
ture of the site

Figure 6. New site: Most of not
found pages are coming from 3rd
party referrer

Figure 7. New site: percent of not
found pages, not found pages from
search engines, not found pages from
3rd party referrer

Figure 8. Percent of not found
pages having an external referrer
with our support layer enabled

After migration, most of not found request were made via a 3rd party
referrer (6).

Figure 7 depicts the percent of not found requests made via external refer-
rers in a 30 days time interval, after the migration process had been completed.

In the first week after migration, around 1.9% of the requests made via a
search engine (from the total number of requests made via an external referrer)
were generating a 404 response code, this value dropping to 0.23% in week four.
In the matter of requests made via a 3rd party referrer, in the first week after
migration we measured that 14.7% percent of these requests were for not found



88 DARIUS BUFNEA AND DIANA HALIŢĂ

pages, this value dropping to 4.25% in week four, still above the average of
not found responses that where generated before migration.

Figure 8 shows the percent of not found response after we embedded our
support layer inside the newly migrated version of our test site. The 404 not
found responses have dropped to an average of 1.6% counted for a 30 days time
interval, bellow the average of the old site. In the batch run of the similarity
algorithm we have identified pairs of URLs having the cosine similarity higher
than 0.7 for around 93% of the migrated content. This threshold was exper-
imentally chosen, in fact the similarity distribution in the [0, 1] interval was
either above 0.8 for matching URLs (i.e. correctly identified pairs of URL), or
bellow 0.3 for arbitrary pairs.

6. Conclusions and future work

In this paper we have advanced a server-side support layer for client per-
spective transparent web content migration within a CMS. We have pointed
out the need of such a layer and the challenges in implementing it. Also, we
have proposed a method, covering both the theoretical and practical aspects,
for implementing this layer by mapping URLs from the old site to the ones in
new site based on their content similarity.

We are currently focused in evaluating different similarity functions in
order to improve the matching process and its speed. An improvement which
can be brought into discussion refers to giving different weights in the similarity
algorithm to the various properties of the content such as: URL, page headings,
page title, key words (when the user is coming from a search engine). Another
option to be taken into consideration is redirecting the user to a similar page,
from the content point of view, as the page where he is coming from (i.e. the
page within our site most similar with the referrer). The main goal remains
the same: succeeding in user’s redirection, no matter where he comes from,
even if he comes from a third party referrer.

References

[1] Leena Rao, WordPress Now Powers 22 Percent Of New Active Websites In The U.S.,
August, 2011, TechCrunch

[2] Apache Lucene, http://lucene.apache.org/, A high-performance, full-featured text search
engine library

[3] Amit Singhal, Modern Information Retrieval: A Brief Overview, Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 2011, 24 (4): 35-43

[4] mod alias - Apache HTTP Server, http://httpd.apache.org/docs/current/mod/mod alias.html
[5] Zyxware Technologies, Search404: Automatically search for content when a 404 error

occurs, http://drupal.org/project/search404
[6] Dynamic404 - Logical error-pages, http://www.yireo.com/software/joomla-

extensions/dynamic404



A SERVER-SIDE SUPPORT LAYER FOR WEB CONTENT MIGRATION 89

[7] 404 Redirected Wordpress plugin, http://wordpress.org/extend/plugins/404-redirected/

(1) Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: bufny@cs.ubbcluj.ro

E-mail address: diana.halita@ubbcluj.ro


