
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

A DECORATOR BASED DESIGN FOR COLLECTIONS

V. NICULESCU(1) AND D. LUPSA(1)

Abstract. We propose in this paper a design for a framework dedicated
to collections data structures, based on which we are able very easily to
use, to adapt, to transform, and to extend the collections. A certain col-
lection type is seen as a set of features which are added to a storage sup-
port. The design is based on Decorator together with Proxy and Template
Method design patterns. This design choice allows features to be dynami-
cally added or removed and from this, a high degree of flexibility in creating
and managing the collections is achieved. The framework could be easily
extended, but in an organized and reliable manner.

1. Introduction

In a previous paper [10] we have analysed the general requirements for a
framework dedicated to collections data structures, based on an analysis of
the related work. We propose in this paper a framework for collections data
structures, in which we are able, very easily to use, to adapt, to transform,
and to extend the collections. The design of the framework relies on defining
collections using features, and on a design infrastructure based on Decorator
design pattern together with others such as Proxy and Template Method [5].
A certain collection type is seen as a set of features that are added to a storage
support. These features could be dynamically added or removed and this leads
to a high degree of flexibility in creating and managing the collections.

Received by the editors: May 9, 2013.
2010 Mathematics Subject Classification. 68P05.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; E.2 [Data]: Data

Storage Representation .
Key words and phrases. data structures, collections framework, design patterns, generic-

ity, representation.
This paper has been presented at the International Conference KEPT2013: Knowledge

Engineering Principles and Techniques, organized by Babeş-Bolyai University, Cluj-Napoca,
July 5-7 2013.

54



A DECORATOR BASED DESIGN FOR COLLECTIONS 55

2. Theoretical approach

The problems that could be emphasized related to the formal and accurate
defined types that characterize the data structures are related to the fact that
universal and overall accepted definitions could not be found. In the literature
there are different classification and definitions for the types corresponding to
different containers. And because of this, the existing implemented solutions
- frameworks - are also very different [10, 8].

We may start from a general definition:

Definition 1 (Collection). A collection – sometimes called a container –is
simply an object that groups multiple elements into a single unit. Collections
are used to store, retrieve, manipulate, and communicate aggregate data.

There are two general and important aspects related to collections [9]:

(1) storage capability – the elements that are grouped together have to be
stored into the memory in an accessible way; usually the term container
reflects more this aspect;

(2) specific behavior – the operations that are allowed for a specific type
of container have different specifications; usually the term collection is
chosen to emphasize this aspect.

The first aspect is directly connected to the data structure used for storing
the elements. For storage, we may use a continuous block of memory or a set of
discontinues blocks of memory (nodes) connected one to another using links
(references). A linked representation may have different structures: linear,
tree-like, or others.

The set of operations that could be applied to a container may be differ-
ent, but also their specification may be different from one collection type to
another. In order to emphasize these differences from behavior point of view,
we may identify a set of features that could be applied to a container. So,
our approach is not based on abstract data types, but on specific behaviors
defined with features.

Definition 2 (Feature). We consider a feature as being a distinctive prop-
erty that characterizes the behavior of a collection – an operation or a set
of operations with defined arguments, together with their semantic expressed
by a clear specification. It is something that fundamentally characterizes the
collection behavior.

2.1. Storage capability. Each collection has to be stored in the memory, in
a way that allows elements to be added, removed, and retrieved. The storage
capability of a collection could be considered as a basic, compulsory, implicit
feature. It is an implicit feature that characterizes any collection; the set of
operations of this basic feature could be seen in Figure 1.



56 V. NICULESCU AND D. LUPSA

Figure 1. IStorage interface.

The formal specification that characterizes the storage capability could be
given using Hoare style specifications.

-: The postcondition of the method add(e:Element) assures just the fact
that the element e is in the storage;

-: The postcondition of the method remove(e:Element) assures that one
instance of the element e has been removed from the storage if such
an instance exists;

-: The number of the elements in the storage is returned by the method
size(), and we may obtain an reading iterator over the elements of
the storage using the method iterator().

-: The methods copyFrom() and copyTo() are import/ export operations;
they allow the elements of an entire other container to be added into,
and also to insert all the elements into another container.

Instead of considering Iterable as an independent feature we have consid-
ered the existence of an iterator on the storage as being implicit. The reason
of this decision is based on the fact that many features could be easily added
and implemented based on iterators. If the iterability is implicitly considered
then the correctness of other features definitions is assured easier. Also, there
are implicit implementations of certain operations based on iterators.

In conclusion, we have considered that:

• memory representation,
• iterability, and
• searchability

are implicit properties of each collection type of our framework.
Our decision to consider all of them as basic properties is based on the

fact that in the proposed framework the first level data structures (which are
used for storage) are not created as a combination of their basic properties.



A DECORATOR BASED DESIGN FOR COLLECTIONS 57

Two important memory representation categories have to be considered:

-: block representation,

-: linked representation.

The block representation means that a single continuous block of memory
cells is used for storing the elements. There are no many options for achieving
this: simple array implementation is the main choice.

A linked representation means that we may use memory locations at differ-
ent addresses – nodes, and the elements could be retrieved based on using link
information between these nodes. Examples of this category are the linked list
and the linked trees.

2.2. Specialized behavior – specialized containers. Starting from a con-
crete storage structure we may create different collection types, by adding
different behaviors.

Definition 3 (Behavior). A behavior is defined as being formed of a combi-
nation of a set of basic features.

In Table 1 the considered features are presented.
Generally, a set is characterized only by the fact there are no duplicate

elements in the container. The feature unique defines the operation add with
the same argument list as in the basic storage type, but changes the postcon-
dition of the operation, by assuring the fact that the argument is added only
if its value is not yet present in the container. How these elements are stored,
is not a fact that characterizes the set.

Searchable feature certifies the fact that there is an operation for searching
an element in the container with a time-complexity less than O(n), which is
the time-complexity of the implicit searching operation. Sorted arrays or the
binary searching trees are example of searchable containers.

Ranked is a feature that specifies an added behavior that allows the access
to the elements based on their rank. A rank of an element in a collection is
equal to the rank of it in the traversal executed by the implicit iterator. And
so, this could be added not only to sequences.

FlagDeletion allows logical deletion of the elements. This means that an
element is not really removed from such a collection, but it is just logically
marked for deletion. A purge operation will do the real deletion of all marked
elements.

A container could have the DeepOwnership over the elements that it collects.
From the implementing point of view this means that when an element is added
into, a copy of it is created and this copy is stored, and when an element is
deleted, it is destroyed, too.



58 V. NICULESCU AND D. LUPSA

Sequence assures the fact that the elements are in a particular linear order;
so there are first and last elements, and each elements in between have a
previous and a succesive element.

Stacks and queues specify specific behaviors, and because of that, they
could be seen as features.

If the elements that are stored form pairs (key, value) this means that we
have an associative container. There are several variants to achieve this.

Synchronized feature assures the fact that the container could be used in
multiprogramming, by several threads of execution.

Many other features could be defined, and this represents the main modal-
ity of extending the framework.

2.3. Features classification. The features could be classified depending on
how they change the behavior of the container:

(1) features that preserve the default container operations, but changes
their specifications; ex. Unique;

(2) features that add new operations; ex. Ranked, Sequence;
(3) features that restrain the set of operations; ex. UnmodifiableStorage;
(4) features that restrain the implicit set of operations, but add some

other new operations; ex. Stack, Queue – they eliminate remove, and
introduce extract();

Features like Stack, Queues or PriorityQueue have all in common the fact
that they use a special rule (LIFO, FIFO, etc.) in order to extract the elements
from their storage. So, they are specializations of a more general feature
RuleBasedExtraction.

As we have mentioned before one goal of the framework is to allow features
to be added and removed dynamically. Still we may identify some restrictions;
for example there are features, which could not be added after we have already
added some elements into the support container. All these features are spe-
cializations of EmptyStorage feature.

Generally, between features we may establish specialization/generalization
relationships.

In order to create new kind of containers a linear combination of features
can be used. We consider that each feature is wrapped around the previous
feature, or storage (storages could be seen as basic features).

Some of these features are symmetric – could be combined in any or-
der without changing the result. Examples of this type are: Unique and
DeepOwnership.

The features that add new operations are not symmetric with the rest of
the features. Stack, for example, add the operation extract() that allows the



A DECORATOR BASED DESIGN FOR COLLECTIONS 59

elements to be extracted based on the LIFO rule; it should be the last added
feature in order to allow this operation to be accessible.

Because of these, we introduce levels for all features, based on which we
will impose an order to combine the features. Table 1 presents the levels, the
features of each level, and the existence or not of the symmetry property of
each level.

Level Features Symmetry
4 Ranked, Stack, Queue, PriorityOueue, Map, DMap, OMap no
3 Synchronized,Unmodifiable no
2 Unique, FlagDeletion, DeepOwnership, Searchable yes
1 Sequence, SortedSequence, Heap, BSTree, Hashing no
0 all the storages types no

Table 1. Features and their level based classification.

A level is symmetric iff all features defined inside it, could be added in a
symmetric way. This means that we can add as many features we want of that
level, in any order. From a non-symmetric level we may add only one feature;
there is mutual exclusion between the features of such a level.

The feature Unmodifiable is applied when we want to use an existing col-
lection only for storing and searching. We add this feature to assure that the
collection state will not be changed; these kinds of collections do not need syn-
chronization. So, the features Unmodifiable and Synchronized could belong to
the same unsymmetric level.
In order to assure a proper synchronization of all the collection operations, we
have considered the Synchronized feature in a level as high as possible. For
example, Synchronized feature should be added after Unique feature, since if
the verification of the existence of a value in the container would not have
done in a synchronized manner then the result will probably not be correct.
Still, the features that change the basic IStorage interface should be on the
highest level.

Since we have introduced levels for each feature, we may formally define
the notion of a well defined collection:

Definition 4 (Well-defined collection). If the collection C is defined as

C = F1 ◦ F2 ◦ · · · ◦ Fn ◦ S
where Fi are features, and S is a storage instance, then the collection C is
well-defined if:

• level condition:

level(F1) ≥ level(F2) ≥ · · · ≥ level(Fn)



60 V. NICULESCU AND D. LUPSA

and
• mutual exclusion condition:

∀ level l 6= 2; ∃! Fi(0 < i ≤ n) such that level(Fi) = l

We may consider few concrete examples:

• Searchable ◦ Unique ◦ SortedSequence ◦ Array represents a search-
able sorted set stored into a storage of block memory representation
type – Array; the collection is a well-defined collection since
level(Searchable) = level(Unique) = 2; level(SortedSequence) = 1;
and the level 2 is symmetric.
• Ranked ◦ Unique ◦ DeepOwnership ◦ LinkedList represents a ranked

set that is the owner of its elements, and a LinkedList is used for stor-
age; the collection is a well-defined collection since level(Ranked) = 4;
level(Unique) = level(DeepOwnership) = 2; and the level 2 is symmet-
ric.

3. Framework Design

The main idea and advantage of the framework is the following:

Anytime a feature could be added to a collection data structure and then could
be removed.

Decorator design pattern [5] fits very well to this way of creating new
types of containers, and this is why we have chosen to used it in framework
implementation. The Decorator pattern is combined with Proxy pattern [5],
since the decorations could be easily implemented by adding prefix and suffix
operations that precede and succeed the initial operations. Also, Template
Method pattern [5] is useful for implementing and using these operations.

Generally, Decorator pattern allows responsibilities to be added to an ob-
ject by modifying the existing methods, not by adding methods to the object’s
interface. This means that in a classical usage of the pattern, the interface
presented to the client must remain constant as successive layers are specified.
This corresponds to symmetric features. For the highest level features the
same infrastructure is used, but the new interfaces of these features are acces-
sible if they are added as the last decoration, but also they take the benefits
of the lower levels decorations.

The symmetric features modify the specifications of the basic feature op-
erations. Prefix proxy operations could modify the preconditions, and suffix
proxy operations could modify the postconditions.



A DECORATOR BASED DESIGN FOR COLLECTIONS 61

Figure 2. Decorator design for defining specialized collections.

A decoration that correspond to a feature that restrains the basic features
implements prefix proxy operations that block the execution of the operations
that have to be excluded.

3.1. Specialized Containers. The root decorator class is
SpecializedContainer<T> that extends Storage<T>, but which also uses a stor-
age of type Storage<T>. Each feature will be introduced as a decoration of the
storage (Figure 2).

This class defines template methods for each independent methods of the
class Storage<T>. These methods call the proxy methods that precede and
succeed the calls of the Storage<T> methods. We have:

• prev add and post add,
• prev remove and post remove,
• prev search and post search,
• prev it and post it.

The postcondition of the method add assures the fact that if the element
has been added, then a not null reference on the added element is return;
usually this reference is of iterator type.

The proxy methods for adding are used also for other similar operations
such as insert and set of iterators.

When we define a container with several decorations, the proxy methods
of each decoration is called in a chain. The following example illustrates these
calls.

Example[Proxy methods]

Storage<Integer> s =

new Deco1<Integer>(new Deco2<Integer>(new Array<Integer>())));

s.add(4);

First, the method s.add(4) calls the method prev add defined in Deco1, then
the method prev add from Deco2 is called, and then (if it is the case) the



62 V. NICULESCU AND D. LUPSA

element is included using the method add from Array class. After this, the
methods post add from Deco2 and Deco1 are called in this order.

The proxy methods are very important for operations specializations. The
following examples emphasizes their use.

: In order to define a set we have to assure the fact that no duplicates are
included into the container. Unique defines a decoration that assures
this fact. This could be easily implemented using these proxy methods,
more precisely by defining the method prev add in such a way that if
the element is already into the container, the add operation of the
storage support is not longer called.

: Another example is for DeepOwnership feature that creates a copy of the
element to be added, inside the own method prev add. In the method
post remove the reference to the copy of the element could be set to
null. If the framework would be ported into a language as C++, here
the destructor could be explicitly called.

: In order to define synchronous access to a container we use (Synchronized
feature). The same proxy methods are used: a prev method locks the
storage container, and a post method releases it.

A container could be modified not only directly by sending corresponding
methods to it, but also through an iterator built over it. Because of this the
proxy methods have to be used by the iterator operations, too.

This design of the framework allows a very flexible and dynamic adapta-
tion: one decoration could be added and used for a while, and then could be
dynamically removed.

4. Related Work

There are many others collections frameworks as well. We have analyzed
in [10] some of them [4, 6, 12, 13, 14, 15, 3], and emphasies the different
approaches and some general requirements.

Another related approach is connected with feature-based programming
and generative programming [1, 2]. Generative programming has important
advantages such as: static composition and adaptation, which lead to effi-
ciency, and external and internal adaptations, which leads to flexibility. Still,
there are also important drawbacks; such as using as composition operator
only the parameterization of specific language constructs (types, classes, func-
tions) , but the most important is the lack of dynamic composition.

Our approach embraced the same idea of using features, but we have
considered only behavior features. We have imposed a delimitation of the
storage aspects of a container from the behavioral aspects. Another important
difference is at the design level, and it is given by the Decorator pattern (and



A DECORATOR BASED DESIGN FOR COLLECTIONS 63

the other connected design patterns). Based on this, the features could be
added and removed dynamically.

5. Conclusions and Further Work

Decorator pattern has been used in order to allow the creation of a new
collection based on dynamic composition of the features that characterize the
corresponding data structure. In this way we may add or remove features
dynamically. Also, Proxy design pattern could help us for defining specialized
operation based on their basic variants.

The fact that only linear combinations of features are allowed could be
seen as a disadvantage since the features with changed interface are visible
only if they are finally added. Still, when working with a collection at one
moment only one such feature is used. Because we allow features to be added
and remove dynamically, linear combination is not longer a disadvantage.

Scalability is an important issue related to collections libraries, or frame-
work. There are so many categories of data structures with so many variants,
such that a classical approach would lead to an enormous number of classes to
cover all. Our approach masters the incrementation of the necessary number
of classes.

This approach has been directed by the reason of creating a framework
easy to use and extend. The design of the framework induces an order in
using the collections but also in developing new extensions. This is achieved
while the scalability is preserved.

As a further work we intend to develop a concrete implementation of the
proposed design and analyse the achieved usability, flexibility and performance
of the resulted framework.

References

[1] D. Batory,B.J. Geraci:Composition Validation and Subjectivity in GenVoca Generators.
IEEE Trans. Software Engineering’97.

[2] K. Czarnecki, U. Eisenecker: Generative Programming. Addison Wesley, 2000.
[3] J. Bloch: The Java Tutorial. Trail: Collections

http://docs.oracle.com/javase/tutorial/collections/.
[4] M. Evered, G. Menger, J. L. Keedy, A. Schmolitzky: A Useable Collection Framework for

Java, 16th IASTED Intl. Conf. on Applied Informatics, Garmisch Partenkirchen, 1998.
[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable

Object Oriented Software, Addison-Wesley, 1994.
[6] D.R. Musser, A. Scine:STL Tutorial and Reference Guide: C++ Programming with Stan-

dard Template Library, Addison-Wesley, 1995.
[7] V. Niculescu: A Uniform Analysis of Lists Based on a General Non-recursive Definition.

Studia Universitatis “Babeş-Bolyai”, Informatica, Vol. LI, No. 1 pp. 91-98 (2006).
[8] V. Niculescu, G. Czibula: Fundamental Data Structures and Algorithms. An Object-

Oriented Perspective, Casa Cărţii de Ştiinţă, 2011 (in Romanian).



64 V. NICULESCU AND D. LUPSA

[9] V. Niculescu,: Storage Independence in Data Structures Implementation, Studia Univer-
sitatis ”Babeş-Bolyai”, Informatica, Special Issue, LVI(3), pp. 21-26, 2011.

[10] V. Niculescu, D. Lupsa, R. Lupsa: Issues in Collections Framework Design. Studia
Universitatis ”Babeş-Bolyai”, Informatica,Vol. LVII, No. 4 (Dec. 2012), pp. 30-38.

[11] C. Szypersky, S. Omohundro, S. Murer: Engineering a Programming Language: The
Type and Class System of Sather, in Programming Languages and System Architectures,
ed. J. Gutknecht, Springer-Verlag, pp. 208-227, 1993.

[12] P. Sestoft , N. Kokholm: The C5 Generic Collection Library for C# and CLI
http://www.itu.dk/research/c5/

[13] Fastutil: Fast & compact type-specific collections for Java,
http://fastutil.dsi.unimi.it/

[14] Guava project,https://code.google.com/p/guava-libraries/
[15] YACL - Yet Another Collections Library,http://sourceforge.net/projects/zedlib

(1) Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: vniculescu@cs.ubbcluj.ro

E-mail address: dana@cs.ubbcluj.ro


