STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

FORMAL DEFINITION OF FUML IN K-FRAMEWORK

SIMONA MOTOGNA, FLORIN CRACIUN, IOAN LAZAR, BAZIL PARV

ABSTRACT. The Alf language was introduced as a simpler, textual defini-
tion of f{UML executable models. The operational semantics of Alf is de-
fined by mapping the Alf concrete syntax to the abstract syntax of f{UML.
The operational semantics of f{UML is described in a semi-formal way, fo-
cusing on its implementation in Java. Our paper addresses two problems
regarding this issue: i) semantic integration, namely semantics mappings
should be defined using platform independent constructions, and ii) the
correctness of the execution engine must be guaranteed. We propose an
approach to give a formal definition of Alf in the K-semantic framework.
Executable K-definitions will specify a reference virtual machine that can
gain access to K’s tools for formal analysis and verification.

1. INTRODUCTION

Software systems have recorded a spectacular evolution in the last years:
they become more complex every day, and are used in a lot of domains. This
evolution puts a lot of pressure on the development cycle of software systems,
such that we would like to automate the development process as much as
possible. Constructing software automatically from high-level models is one of
the challenges in software engineering nowadays.

In this context, models should be easy to built, but should also encapsulate
a complete and precise behavior description. An executable model, in addition,
has an associated formal action semantics such that the model can be executed
an tested in this early stage of development. fUML [15] is the OMG proposal
for such an approach.

Received by the editors: April 15, 2013.

2010 Mathematics Subject Classification. 68N30, 68Q60.

1998 CR Categories and Descriptors. D.2.4 [Software/Program Verification]:
Subtopic — Validation; F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams|: Subtopic — Logics of programs.

Key words and phrases. f{UML, K-Framework, Formal Methods.

This paper has been presented at the International Conference KEPT2013: Knowledge
Engineering Principles and Techniques, organized by Babes-Bolyai University, Cluj-Napoca,
July 5-7 2013.

41

42 SIMONA MOTOGNA ET AL.

In a visionary article, Harel & Marron [8] argue that the abstraction level
provided by models and specifications will make them more expressive and
intuitive and the focus in software systems development will shift to model
construction, composition and adaptivity. Considering the important role of
models in the description of the system’s behavior, it is clear that such an
approach must assure at least some essential attributes of the system, such as
correctness, safety, completeness.

Formal methods represent the mathematical instrument that can be used
to assure these attributes, as they offer the appropriate mechanism to detect if
a model has errors or how they can be avoided. The main drawback in the use
of such methods is the fact that they are difficult to be understood by software
engineers.

The main goal of this paper is to propose an approach that will take advan-
tage of the characteristics of formal methods in order to construct a complete
semantical definition of Alf and to provide an execution engine for it. The tool
that we have chosen is the K-framework proposed in [19], based on its main
features. The K-framework provides the necessary constructions to define the
Alf semantics and its features can be used for reaching our purpose [20]:

e executability: the definitions are directly executable in order to be
experimented with and analysed;

e unique definition: there is only one definition for a language, and sev-
eral analysis tools that are sound with respect to this definition;

e program logic: the framework serve as a program logic with which the
programs can be verified and analysed.

The rest of the paper is organized as follows: the next section gives an
short introduction to fUML, Alf and K-framework discussing related work
concerning these subjects. Section 3 is dedicated to the presentation of our
approach to constructing a virtual machine for fUML, while Section 4 deals
with conclusions and future research directions.

2. BACKGROUND

2.1. fUML and Alf. Approaches in which modeling is at the core of the de-
velopment activities also simplify the component construction process [5]. One
of the main component based development’s challenge is to provide a general,
flexible and extensible model, for both components and software systems. This
model should be language-independent, as well as programming-paradigm in-
dependent, allowing the reuse at design level. Well-known such approaches are
based on UML and MDA.

MDA framework [12]| provides an approach for specifying systems indepen-
dently of a particular platform and for transforming the system specification

FORMAL DEFINITION OF FUML IN K-FRAMEWORK 43

into one for a particular platform. The most important benefits are higher ab-
straction level in program specification and increase of automation in program
development. The availability of such tools and the easiness of their use has
contributed to the success of MDA. But development processes based on MDA
are considered heavy-weight processes since they cannot deliver (incrementally)
partial implementations to be executed as soon as possible.

In this context, executing UML models became a necessity for development
processes based on extensive modeling. For such processes, models must act
just like code, and UML 2 and its Action Semantics [13] provide a foundation
to construct executable models. In order to make a model executable, it must
contain a complete and precise behavior description. Unfortunately, creating
such a model is a tedious task or an impossible one because of many UML
semantic variation points. Executable UML [9] means an execution semantics
for a subset of actions sufficient for computational completeness. Two basic
elements are required for such subsets: an action language and an operational
semantics. The action language specifies the elements that can be used while
the operational semantics establishes how the elements can be placed in a
model, and how the model can be interpreted. Again, creating reasonable
sized executable UML models is difficult, because the UML primitives from
the UML Action Semantics package are too low level.

The Executable Foundational UML (fUML [15]) is a computationally com-
plete and compact subset of UML, designed to simplify the creation of exe-
cutable UML models. The semantics of UML operations can be specified as
programs written in f{UML. The fUML standard provides a simplified subset
of UML Action Semantics package (abstract syntax) for creating executable
UML models. It also simplifies the context to which the actions need to apply.
For instance, the structure of the model will consist of packages, classes, prop-
erties, operations and associations, while the interfaces and association classes
are not included.

The complete static and operational semantics of fUML is still in its early
stages, and although several proposal have been issued, this problem is still
open. In our opinion, the difficulties risen in the complete semantical definition
of fUML lie in the following three aspects:

e The fUML standard enforces a data flow abstract representation for
the behavior of the methods. For example, accessing the values of
parameters or variables from certain reserved locations, the values (or
the references) of these types of entities will flow as tokens on edges.
If a parameter or variable is used in multiple places, its value is copied
using a fork node and sent to each action that needs it. To assign a

44 SIMONA MOTOGNA ET AL.

new value to the entity, a new point that provides the value is created
(with a new fork node).

e The number of fUML constructs and the relations between them; most
of the research carried in this field concentrate on a subset of fUML,
especially on actions and activities, but the integration of all syntactical
elements in the formal specification is not an easy task.

o fUML suffers from the same problem as several well-known program-
ming languages, namely they are not designed or analyzed using formal
semantics. The current implementation of fUML uses a Java virtual
machine, and the correctness of the semantical constructions and their
corresponding behavior cannot be guaranteed. In a formal environ-
ment, using a mathematical mechanism we can prove different proper-
ties regarding model execution.

The language Alf has been adopted as Action Language for fUML in
2010 |14] providing a concrete syntax for describing fUML models. Alf seman-
tics is mapped to fUML abstract syntax metamodel. Alf syntax is inspired
from well known programming languages such as C+-+ and Java, and "acts as
the surface notation for specifying executable behaviors within a wider model
that is primarily represented using the usual graphical notations of UML” [14].
In this way, creating reasonable sized executable UML models is much easier
based on Alf constructs, instead of low level UML primitives.

There has been a lot of reaserch in the field of verification an semantic
specification for fUML and Alf, based on diverse mathematical mechanisms.
Relevant results have been obtained in using CSP (Communication Sequential
Processes) [3, 1, 2], considering a lightweight verification method for strong ex-
ecutability [18, 17|, or using Petri Nets [22]. However, all these approaches fail
to offer a complete specification, since they impose restrictions on used UML
diagrams and notations. The fUML virtual machine is under investigation
in [21].

The execution for f{UML activities is concurent, the nodes within activities
may be executed concurrently according to the control and data flow model
defined by the UML specification. Figure 1 (a) shows an fUML activity frag-
ment which computes the value 7. According to fUML, an action may begin
execution when it has been offered control tokens on all its incoming control
flows and all its input pins have been supplied (via object flows) object tokens
sufficient for their multiplicities. Figure 1 (a) does not contain control flows.
When this fragment is executed, three control tokens are offered for the value
specification actions, because these actions do not have incoming control flows.
These actions may be executed concurrently and they provide the values 1, 2,
respectively 3 to the other actions. Because the next two call behavior actions

FORMAL DEFINITION OF FUML IN K-FRAMEWORK 45

(+) require the object token offered by the fork node a, they will wait until that
token will be offered by that fork node (synchronization mechanism). When
the fork a offers the object token, the next two + actions may be executed
concurrently and their results will be offered (via the fork nodes b and ¢) to
the last + action which will provide the final value.

astructureds

astructureds
a=1

avalueSpecifications
1

estructureds

¥

astructureds
b=a+2

wealueSpecifications
1
avalugSpecifications

wvalueSpecifications
2

astructureds
c=a+3

avalugSpecifications

x ¥ 3

Ly I
P
th
resut c I
ssiructureds

d=b+c X o

e U
v
th

o : s result

Ficure 1. (a) fUML activity fragment; (b) Alf to fUML
mapped activity fragment.

Using a textual notation, the activity fragment from Figure 1 (a) may be
written as shown in Figure 2 (a). Taking into account the concurent execution
semantics of fUML, after a is computed, the statements 2 and & may be exe-
cuted in parallel, then d will be computed after the previous executions have
been completed. We may notice that the statements presented in Figure 2 (a)
are common to the languages that use a sequential model of computation. So,
if this textual representation would be compiled into a parallel fUML repre-
sentation without explicit mechanisms for specifying the concurrency aspects,
then it would be difficult to write and control the concurrency aspects.

a = 1; //Statement 1
//@parallel

{b=a+2; //Statement 2
c=a-+3;} //Statement 3
d=Db+ ¢ //Statement 4

a=1; //Statement 1
b =a+2; //Statement 2
c=a+3; //Statement 3
d =b + ¢; //Statement 4

F1GURE 2. (a) Block of statements written using a textual no-
tation; (b) Alf textual notation

46 SIMONA MOTOGNA ET AL.

Alf defines a textual representation inspired from such languages, but also
adds features which allows users to write parallel programs using very sim-
ple textual constructs mapped to the powerful abstract syntax of fUML. For
example, Figure 1 (b) shows the f{UML activity corresponding to the textual
representation from Figure 2 (a). Because the textual representation contains
a sequence of statements (sequential model of computation), all statements
are mapped to structured activities having control flows between them. But,
the control flow introduced between the structured activities corresponding to
the statements 2 and & will prevent the concurrent execution of these two
statements.

In order to indicate parallel execution, Alf provides the parallel annotation.
Figure 2 (b) explicitly shows that the statements 2 and & must be executed in
parallel, and after both will be completed, statement 4 will be executed. The
compiled fUML model of this textual notation contains a structured activity
containing the compiled statements 2 and 3, but without control flows between
them.

Alf allows us to use the parallel annotation for the block written in Figure
2 (a). In this case, the compiled model would be the model from Figure 1 (b)
but without control flows between structured activities. The synchronization
between actions follows the control and data flow model. (There are some
restrictions for parallel blocks, e.g. a local name used in the lhs of assignments
may be part of only one assignment.)

a = 1; //Statement 1

//@parallel

{

b = a + 2; //Statement 2
¢ —a + 3; //Statement 3

¥
d =b + ¢; //Statement 4

FIGURE 3. Alf textual notation

2.2. K-framework. Developed as a collaborative effort between several re-
search groups, K is a rewrite-based framework supporting definition and ex-
ecution of programming languages. The K-semantics can be executed and
tested, and the underlying matching logic and language Maude can be used
for program analysis and verification.

A K definition consists of configurations, computations and rules. Several
notable results, such as the formalization of C [6], Scheme [10], and Verilog [11],
type checking |7] and symbolic execution [4] have contributed to the confidence
in the K-framework capabilities. Recent approaches [20] suggest that K may
be a suitable tool for formalization and analysis of f{UML and Alf.

FORMAL DEFINITION OF FUML IN K-FRAMEWORK 47

3. VIRTUAL MACHINE FOR FUML

In this section we illustrate our formalization of f{UML in K-framework.
The fUML standard includes class and activity diagrams to describe a sys-
tem’s structure and behaviour respectively. In this paper we mainly focus on
the formalization of the activity diagrams. A formalization of class diagrams
has already been given in |20]| and can be later integrated with our current
approach.

We start with the syntax of ALF simple expressions which are going to be
mapped to actions nodes in fUML.

MODULE ALF-SYNTAX
SYNTAX AFEzp:=1Id

| Int
| AEzp + AExp

| AEzp * AExp
SYNTAX Ids::= List{Id,“,”}
SYNTAX Stmt::= Id= AExp
| Stmt ; Stmt
SYNTAX AEaxps ::= List{ AExp,“,”}
END MODULE
In order to define the K-semantics of f{UML we introduce the main K-
configuration. A configuration consists of a pool of actions (cellgction*) Which
forms an activity (cellgetivity). Each action has a list of input (cellinpin) and
output pins (cellpupin) and the program that is going to be executed (celly).
Input and output pins are named. Action pins names are mapped to global
names through the action environment (celle,,). The global names are kept
in an activity store (cellsiore). The activity store allows the actions to com-
municate in a asynchronous way. An action can read an input pin only if its
name is not mapped to an undefined value (). After the action execution is
completed the action output pins are mapped to values. For the moment we
do not make a distinction between data and control pins (since they can have
the same formalization). The action nodes are executed concurrently.

CONFIGURATION:
store
®Map

ALF program is stored in one of the action nodes and is translated into
one or more fUML action nodes. Note that ALF action nodes and fUML
action nodes are treated in a similar way and their execution runs in parallel.

activity

action*

48 SIMONA MOTOGNA ET AL.

The execution of an ALF action node generates a fUML activity diagram (a
pool of interconnected f{UML action nodes), while the execution of the fUML
action nodes do the model execution namely the propagation of object flow
and control flow through the fUML model.

We adopted a small-step operational semantics for the translation of ALF
to fUML. Therefore we introduced the following intermediate operations to
be executed inside a fUML action node (in cellk): read to allow the fUML
action to wait for the input pins (data and control input flow) to have valid
values; write and write Var to propagate the values on the output pins (data
and control output flow); lookup to find the value assigned to a global name
which usually denotes a variable name or an input pin name; and callBehaviour
to invoke a fUML behaviour (For simplicity in this paper we consider only the
simple arithmetic operations to illustrate the concepts of our formalization).
The undefined value L is used to model the f{UML diagram edges on which data
or control flow has not been propagated yet. Thus the activity global names
(corresponding to fUML activity edges) are mapped to L in the activity store.

SYNTAX K ::=read (Ids)

| write (Int, Ids)

| writeVar (Id)

| callBehaviour (+, Id, Id)
| lookup (Id)

| L

The following rules illustrate the translation of ALF action nodes into
fUML action nodes. The graphical presentation of the rules is directly gen-
erated by K-framework compiler. Note that in this paper we split a rule on
many lines due to the page width limitation such that the notations pl...pn
denote the components of a splitted rule.

The first rule generates two new fUML actions from an ALF assignment
X = I (where X is a variable name and [is a constant) as follows: a value spec-
ification action (ALF-to-fUML-1-p2) and a variable action (ALF-to-fUML-1-
p3). Note that new fUML action nodes are added to the existing action nodes
in that activity. The rule assumes that inside the activity exists an ALF action
node (ALF-to-fUML-1-p1) that has that assignment as the current instruction
in its cellg. The rule consumes that assignment of the ALF action node and let
the ALF action celli to continue with the next instruction. The fUML actions
input and output pins are kept separately and are linked together through the
local action environments and global activity store. Those two new generated
fUML actions and ALF initial action are executed concurrently. f{UML actions
communicate in an asynchronous manner through the store variable N.

FORMAL DEFINITION OF FUML IN K-FRAMEWORK 49

RULE

activity
§|‘||||||“‘E pLL/<N]LL/ Xq
[l

RULE

®Bag

action
k env inpin outpin
I Tout — N st Tout
[l

RULE

®*Bag

action
k env inpin outpin
X Tin+— N X — N Tin X
]

The following rule generates four new fUML action nodes from an ALF
assignment X = I1+Y (where X is a variable name and I1 is a constant) as
follows: a value specification action, a waiting actions (lookup for the variables

valid values), one call behaviour action and a variable action.
RULE

action

store

P
p[L / N1][L / N2][L / N3][L / X])

[ALF-to-fUML-2-p1]
RULE

®*Bag

action
k env inpin outpin
11 Tol — N1 o st Tol

[ALF-to-fUML-2-p2]

50 SIMONA MOTOGNA ET AL.

RULE

*Bag

action
k env inpin outpin
Lookup (V) To2 — N2 Y To2

[ALF-to-fUML-2-p3]

RULE

®*Bag

k env inpin
callBehaviour (+, T%1, T%2) Til — N1Ti2 — N2To8 — N3 Til Ti2

[ALF-to-fUML-2-p4]

A fUML action node is destroyed when its executable code is completed
(namely K-cell is empty). We also provide rules for simplification of ALF

expressions like the following:
RULE

X=F1+FE2
Y=F1; X=Y+E2
when E1 =/=K Id Apooi E1 =/=K Int

Next rules define the execution of the fUML node actions: value specifica-
tion, variable and call behaviour. Fach rule first waits for the valid values on

its input pins and then writes an appropriate value on its output pins.
RULE

k inpin outpin
I) Tins Touts

read (Tins) ; write (I, Touts)

[fUML-Action-ValueSpec]
RULE

k inpin outpin
X) Tins X

read (T'ins) ; writeVar (X)

[fUML-Action-Var|
RULE

k inpin outpin
callBehaviour (+, T%1, Ti2)) Til Ti2 Touts

read (741, T42) ; write (T4l +p T92, Touts)

[fUML-Action-CallBehaviour]

FORMAL DEFINITION OF FUML IN K-FRAMEWORK 51

The rule for lookup is waiting for a global variable to have a valid value in
the store. When the assigned value is valid, that value is written on the output

pins.
RULE

lookup (X)
write (I, Touts)

inpin outpin store
X Touts X =1
when I =/=p,; L

[fUML-Action-Lookup)]

The next rules are writing appropriate valid values on the output pins.
RULE

k
write (I, Tout, Touts) >

Touts

[fUML-Action-Set-Outpins]

The rules for read guarantee that all input pins have received valid values.
RULE

read (Tin, Tins)
Tins

env
Tin — N
when I =/=p,; L

[fUML-Action-Wait-Inpins]

4. CONCLUSIONS AND FUTURE WORK

We propose a novel formalization of ALF and fUML in K-framework. The
K-framework allows us to directly define a concurrent semantics and to execute
fUML models conform to OMG specification [15].

The main contributions of this paper are: i) the definition of K-configurations
corresponding to Alf syntax (fragment for simple arithmetic expressions) and
ii) the specification of the K-rules that simultaneously transform Alf artifacts
into f{UML constructs and execute them.

This paper is to be consider a proof of concepts for an approach of defining
a virtual machine for Alf and fUML in the K-framework, virtual machine that
will be based on the executable K-rules.

In contrast to the existing f{UML virtual machine implemented in Java our
approach is declarative and allows us to directly support a higher degree of
genericity (specified by explicit semantics variation points in OMG specifica-
tion [15]).

The main benefit consists in a higher level of platform and language inde-
pendence, since the approach will not be based on a Java virtual machine, but
on a more formal definition.

52

SIMONA MOTOGNA ET AL.

Another advantage is the extensibility. It is well known that Alf syntax, and

implicitly its applicability, are quite restrictive [16]. Our approach may offer
the necessary instrument to ease the extension of Alf for specific constructs.

Our future investigations will concentrate on a complete definition for Alf

and fUML in K. Next important step is to integrate class diagrams and OCL
constraints [20] in our current proposal. We also plan to use the K-framework
tools to perform different forms of analysis and verification (e.g. inconsistency,
deadlock free like in [3, 1]) on our K-rules.

1]

[2

3

[4]

[5]

[6

[7

(8]

[9

[10]

REFERENCES

Islam Abdelhalim, Steve Schneider & Helen Treharne (2011): Towards a Practical Ap-
proach to Check UML/fUML Models Consistency Using CSP. In: ICFEM, pp. 33-48.
Available at http://dx.doi.org/10.1007/978-3-642-24559-6_5.

Islam Abdelhalim, Steve Schneider & Helen Treharne (2012): An Optimization Ap-
proach for Effective Formalized fUML Model Checking. In: SEFM, pp. 248-262. Avail-
able at http://dx.doi.org/10.1007/978-3-642-33826-7_17.

Islam Abdelhalim, James Sharp, Steve A. Schneider & Helen Treharne (2010): Formal
Verification of Tokeneer Behaviours Modelled in fUML Using CSP. In: ICFEM, pp.
371-387. Available at http://dx.doi.org/10.1007/978-3-642-16901-4_25.

Irina Mariuca Asavoae, Mihail Asavoae & Dorel Lucanu (2010): Path Directed Symbolic
Ezecution in the K Framework. In: SYNASC, IEEE Computer Society, pp. 133-141.
Available at http://synasc10.info.uvt.ro/[SYNASC].

Krishnakumar Balasubramanian, Aniruddha S. Gokhale, Gabor Karsai, Janos
Sztipanovits & Sandeep Neema (2006): Developing Applications Using Model-
Driven Design Environments. IEEE Computer 39(2), pp. 33-40. Available at
http://doi.ieeecomputersociety.org/10.1109/MC.2006.54.

Chucky Ellison & Grigore Rosu (2012): An Ezecutable Formal Semantics of C with
Applications. In: Proceedings of the 39th Symposium on Principles of Programming
Languages (POPL’12), ACM, pp. 533-544, doi:10.1145/2103656.2103719.

Chucky Ellison, Traian Florin Serbanutd & Grigore Rosu (2009): A
Rewriting Logic Approach to Type Inference. In: Recent Trends in Alge-
braic Development Techniques, Lecture Notes in Computer Science 5486,
Springer, pp. 135-151, doi:doi:10.1007/978-3-642-03429-9. Available at
http://dx.doi.org/10.1007/978-3-642-03429-9. Revised Selected Papers from
the 19th International Workshop on Algebraic Development Techniques (WADT’08).
David Harel & Assaf Marron (2012): The quest for runware: on compositional, exe-
cutable and intuitive models. Software and System Modeling 11(4), pp. 599-608. Avail-
able at http://dx.doi.org/10.1007/s10270-012-0258-8.

Stephen J. Mellor & Marc Balcer (2002): Ezecutable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA| USA.
Patrick Meredith, Mark Hills & Grigore Rosu (2007): A K Definition of Scheme. Tech-
nical Report Department of Computer Science UITUCDCS-R-2007-2907, University of
Illinois at Urbana-Champaign.

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

22]

FORMAL DEFINITION OF FUML IN K-FRAMEWORK 53

Patrick O’Neil Meredith, Michael Katelman, José Meseguer & Grigore Rogu (2010):
A Formal Ezecutable Semantics of Verilog. In: Eighth ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE’10), IEEE, pp.
179-188, doi:doi:10.1109/MEMCOD.2010.555863.
OMG (2003): MDA Guide Version 1.0.1.

Available at http://wuw.enterprise-architecture.info/Images/MDA/
MDA20Guide20v1-0-1.pdf.
OMG (2009): OMG Unified Modeling LanguageTM (OMG UML), Infrastructure Ver-
sion 2.2. Available at http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/.
OMG (2010): Concrete Syntaz for UML Action Language (Action Language for Foun-
dational UML - ALF). Available at http://www.omg.org/spec/ALF/1.0/Betal.
OMG (2011): Semantics of a Foundational Subset for Ezecutable UML Models (FUML).
Available at http://www.omg.org/spec/FUML/Current.
Isabelle Perseil (2011): ALF formal. ISSE 7(4), pp. 325-326. Available at
http://dx.doi.org/10.1007/s11334-011-0168-x.
Elena Planas, Jordi Cabot & Cristina Goémez (2011): Lightweight Ver-
ification of FEzecutable Models. In: ER, pp. 467-475. Available at
http://dx.doi.org/10.1007/978-3-642-24606-7_37.
Elena Planas, David Sanchez-Mendoza, Jordi Cabot & Cristina Gomez (2012): Alf-
Verifier: An Eclipse Plugin for Verifying Alf/UML Ezecutable Models. In: ER Work-
shops, pp. 378-382.
Grigore Rosu & Traian Florin Serbanuta (2010): An Qverview of
the K Semantic Framework. Journal of Logic and Algebraic Program-
ming 79(6), pp. 397-434, doi:10.1016/j.jlap.2010.03.012. Available at
http://dx.doi.org/10.1016/3.jlap.2010.03.012.
Vlad Rusu & Dorel Lucanu (2011): A K-Based Formal Framework for
Domain-Specific Modelling Languages. In: FoVeOOS, pp. 214-231. Available at
http://dx.doi.org/10.1007/978-3-642-31762-0_14.
P. Langer T. Mayerhofer & G. Kappel (2012): A Runtime Model for fUML. Available
at http://publik.tuwien.ac.at/files/PubDat_210111.pdf.
Yann Thierry-Mieg & Lom-Messan Hillah (2008): UML behavioral consistency
checking wusing instantiable Petri nets. ISSE 4(3), pp. 293-300. Available at
http://dx.doi.org/10.1007/s11334-008-0065-0.

() BaBES BOLYAT UNIVERSITY
E-mail address: {motogna,craciunf,ilazar,bparv}@cs.ubbcluj.ro

