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PLAYERS WITH UNEXPECTED BEHAVIOR: t-IMMUNE

STRATEGIES. AN EVOLUTIONARY APPROACH.

NOÉMI GASKÓ(1), MIHAI SUCIU(1), RODICA IOANA LUNG(1),
TUDOR DAN MIHOC(1), AND D. DUMITRESCU (1)

Abstract. An evolutionary detection method based on generative rela-
tions for detecting the t-immune strategies of a non-cooperative game is
introduced. Numerical experiments on an economic game show the poten-
tial of our approach.

1. Introduction

Game Theory (GT) offers proper models to characterize interactions be-
tween agents with conflicting behaviours. The situations where divergent in-
terests interact are modelled as mathematical games. Each player has a set of
strategies (”moves”) that define his possible actions within the game. Many
types of games have been proposed since the concept was first introduced:
games with complete information (players have complete information on the
entire game), cooperative or non-cooperative games (depending on the players’
disposition to build unions or not), one shot games (players play one round
only in the same time), etc.

One of GT’s main aim was to find patterns and solutions that will al-
low scholars to accurate anticipate game’s outcomes and the behaviour of real
players. An equilibrium concept designed for pure rational players, was intro-
duced by Nash [8] and depicts that state where no individual player can gain
more by modifying his option within the game (his strategy) while the others
keep theirs unchanged. Even if it is one of the central solution concepts in GT,
Nash equilibrium was also criticized mostly because of the hard assumptions
on players rationality [6]. Experiments conducted with real people lead to the
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conclusion that Nash equilibrium is seldom the output for games with real
players.

The search for more realistic models for real players leaded to entire classes
of equilibria. The scholars tried to incorporate the ”human” factor in these
models but, even if at some point they succeeded at this task, the proper tools
to solve them were missing. Evolutionary computation can offer a solution for
this. The recent development of fitness solutions for game equilibria detection
[5], [4] allows specialized techniques on strategic games to be developed.

In this study we present a tool, based on evolutionary computation, de-
signed to detect a good approximation of a game t-immune equilibria. This
equilibria attempts to capture the situations where agents are acting in an
unpredictable manner, an irrational behaviour outlined by most of the exper-
iments with real people.

The paper is organized in four sections: an introduction that presents
the domain and emphasise the importance of the approached problem; in the
second section the proposed technique is presented; the conducted numerical
experiments that validate the method are depicted in section three followed
by the conclusions and further work section.

2. Evolutionary equilibrium detection for t-immune equilibria
models

In order to detect the t-immune equilibrium for noncooperative games
in strategic form a generative relation is introduced. Using this relation a
fitness measure is constructed and two evolutionary methods are modified
and adapted to detect t-immune equilibria.

2.1. Prerequisites. A finite strategic game is a system G = ((N,Si, ui), i =
1, ..., n), where:

• N represents a set of players, and n is the number of players;
• for each player i ∈ N , Si is the set of actions available,

S = S1 × S2 × ...× Sn

is the set of all possible situations of the game.
Each s ∈ S is a strategy (or strategy profile) of the game;

• for each player i ∈ N , ui : S → R represents the payoff function of i.

The most used solution concept in Game Theory is the Nash equilibrium
[8]. Playing in Nash sense means that no one from the players can change
her/his strategy in order to increase her/his payoff while the others keep theirs
unchanged.

t-immune equilibrium [1] models situations where players act unpredictable,
not in a rational or expected way. A strategy is t-immune when less than t
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players change their strategy, but without affecting the payoffs for the other
players.

Definition 1. A strategy s∗ ∈ S is t-immune if, for all T ⊆ N , with card(T ) ≤
t, all sT ∈ ST , and all i ̸∈ T :

ui(s
∗
−T , sT ) ≥ ui(s

∗).

t-immune equilibria models the tolerance threshold of players, how many
players can behave unpredictable without affecting the other players payoffs.

2.2. Generative relations. In order to compute equilibria we characterize
them with adequate relations on the strategy set. Such relations are called
generative relations of the equilibrium.

We have the quality measure:

Q : S × S → N,
where S is the set of the strategy profiles.
Let s and s∗ be two strategy profiles, s, s∗ ∈ S.
In this case Q(s, s∗) measures the quality of strategy s with respect to the

strategy s∗.
The quality Q is used to define the relation ≺Q:

s ≺Q s∗, if and only if Q(s, s∗) ≤ Q(s∗, s).

The first generative relation for the Nash equilibrium has been introduced
in [7].

2.2.1. Generative relation for t-immune strategies. Consider a quality measure
t(s∗, s), which denotes the number of players who gain by switching from one
strategy to the other strategies:

t(s∗, s) = card[i ∈ N − T, ui(sT , s
∗
−T ) ≤ ui(s

∗), sT ̸= s∗T , card(T ) = t, T ⊆ N ],

where card[M ] represents the cardinality of the set M .

Definition 2. Let s∗, s ∈ S. We say the strategy s∗ is better than strategy s
with respect to t-immunity, and we write s∗ ≺T s, if the following inequality
holds:

t(s∗, s) < t(s, s∗).

Definition 3. The strategy profile s∗ ∈ S is called t-immune non-dominated,
if and only if there is no strategy s ∈ S, s ̸= s∗ such that

s ≺T s∗.
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Table 1. Parameter settings for t-DE

Parameter Value
Pop size 100
Max no FFE 5000-2 players; 200000-3 players
Cr 0.8
F 0.3

The relation ≺T can be considered as the generative relation for t-immune
equilibrium, i.e. the set of non-dominated strategies, with respect to ≺T ,
induces the t-immune strategies.

2.3. Evolutionary detection method. Two evolutionary algorithms are
adapted for detecting t-immune equilibrium: NSGA-II (Non-dominated Sort-
ing Genetic Algorithm II)[9] and DE (Differential Evolution) [10].

In both algorithms the Pareto dominance relation is replaced with the
generative relation ≺T and two new evolutionary methods for t-immune equi-
librium detection, called t-NSGA-II, respectively t-DE are obtained.

3. Numerical experiments - the Cournot game

In the normal Cournot model [3] n companies produce qi, i = 1, ..., n
quantities of a homogeneous product.

Q =
∑

i=1,n qi is the aggregate quantity on the market, a is a constant,

and the market clearing price is P (Q) = a−Q if Q < a and 0 otherwise.
The total cost for company i for producing quantity qi is Ci(qi) = cqi. The

marginal cost c is constant, and c < a.
The payoff for the company i can described as follows:

ui(q) = qiP (Q)− Ciqi,

where q = (q1, ..., qn). The final form of the payoff function can be described
as:

ui(q) = qi[a−
∑
j=1,n

qj − c], i = 1, ..., n.

In our experiments we consider a = 50, c = 10, qi ∈ [0, 10], i = 1, ..., n and
the two- and three player version of the Cournot game.

Parameter settings for t-DE are presented in Table 1. Parameter settings
for t-NSGA-II are presented in Table 2. Ten different runs are considered, and
the mean and standard deviation is reported.

Result for the two players variant of the Cournot game are presented in
Table 3. Table 4 depicts the three player version of the Cournot game, for
t = {1, 2}.
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Figure 1. Strategies and payoffs for the two player version of
the Cournot game
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Figure 2. Detected 1-immune strategies and payoffs for the
three player version of the Cournot game
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Table 2. Parameter settings for t-NSGA-II

Parameter Value
Pop size 100
Max no FFE 5000-2 players; 185108-3 players
prob. of crossover 0.2
prob. of mutation 0.2

Table 3. Results for 2 player Cournot game for 1-immune
equilibrium (mean values for 10 different runs).

Algorithm timmune
Strategy Payoff
s1 s2 u1 u2

t-DE 1 10 10 200 200
t-NSGA2 1 10 10 200 200

Table 4. Results for 3 player Cournot game for timmune ∈
{1, 2} (mean values for 10 different runs).

Algorithm timmune
Strategy Payoff

s1 s2 s3 u1 u2 u3

t-DE
1 10 10 10 100 100 100
2 10 10 10 100 100 100

t-NSGA2
1 10 10 10 100 100 100
2 10 10 10 100 100 100

Figures 1, 2 and 3 depict the t-immune equilibria for two and three players.
Numerical experiments indicate that the players’ threshold is minimal in

both cases. The firms need to produce maximal quantity of products in order
to avoid the unexpected behavior of some firms.

4. Conclusions and further work

In this study a generative relation for the t-immune equilibrium is pro-
posed. This generative relation is used in two different evolutionary algorithms
to guide the search towards desired equilibria. The Cournot oligopoly model -
an economic game, is considered for numerical experiments. Results underline
the stability and the potential of the proposed method.

Further experiments will focus on large games.
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Figure 3. Detected 2-immune strategies and payoffs for the
three player version of the Cournot game
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