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TEXT REPRESENTATION AND GENERAL TOPIC
ANNOTATION BASED ON LATENT DIRICHLET
ALLOCATION

DIANA INKPEN(") AND AMIR H. RAZAVI®

ABSTRACT. We propose a low-dimensional text representation method for
topic classification. A Latent Dirichet Allocation (LDA) model is built on
a large amount of unlabelled data, in order to extract potential topic clus-
ters. Each document is represented as a distribution over these clusters.
We experiment with two datasets. We collected the first dataset from the
FriendFeed social network and we manually annotated part of it with 10
general classes. The second dataset is a standard text classification bench-
mark, Reuters 21578, the R8 subset (annotated with 8 classes). We show
that classification based on the LDA representation leads to acceptable
results, while combining a bag-of-words representation with the LDA rep-
resentation leads to further improvements. We also propose a multi-level
LDA representation that catches topic cluster distributions from generic
ones to more specific ones.

1. INTRODUCTION

In order to improve the performance of text classification tasks, we always
need informative and expressive methods to represent the texts [14] [16]. If
we consider the words as the smallest informative unit of a text, there is a
variety of well-known quantitative information measures that can be used to
represent a text. Such methods have been used in a variety of information
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extraction projects, and in many cases have even outperformed some syntax-
based methods. There are a variety of Vector Space Models (VSM) which
have been well explained and compared, for example in [18]. However, these
kinds of representations disregard valuable knowledge that could be inferred
by considering the different types of relations between the words. These major
relations are actually the essential components that, at a higher level, could
express concepts or explain the main topic of a text. A representation method
which could add some kind of relations and dependencies to the raw informa-
tion items, and illustrate the characteristics of a text at different conceptual
levels, could play an important role in knowledge extraction, concept analysis
and sentiment analysis tasks.

In this paper, the main focus is on how we represent the topics of the
texts. Thus, we select a LDA topic-based representation method. We also
experiment with a multi-level LDA-based topic representation. Then, we run
machine learning algorithms on each representation (or combinations), in order
to explore the most discriminative representation for the task of text classifi-
cation, for the two datasets that we selected.

2. RELATED WORK

In the most text classification tasks, the texts are represented as a set of
independent units such as unigrams / bag of words (BOW), bigrams and/or
multi-grams which construct the feature space, and the text is normally rep-
resented only by the assigned values (binary, frequency or term TF-IDF") [17].
In this case, since most lexical features occur only a few times in each con-
text, if at all, the representation vectors tend to be very sparse. This method
has two disadvantages. First, very similar contexts may be represented by
different features in the vector space. Second, in short instances, we will have
too many zero features for machine learning algorithms, including supervised
classification methods.

Blei, Ng and Jordan proposed the Latent Dirichlet Allocation (LDA)
model and a Variational Expectation-Maximization algorithm for training
their model. LDA is a generative probabilistic model of a corpus and the
idea behind it is that the documents are represented as weighted relevancy
vectors over latent topics, where a topic is characterized by a distribution over
words. These topic models are a kind of hierarchical Bayesian models of a
corpus [2]. The model can unveil the main themes of a corpus which can po-
tentially be used to organize, search, and explore the documents of the corpus.
In LDA models, a topic is a distribution over the feature space of the corpus
and each document can be represented by several topics with different weights.

'term frequency / inverse document frequency
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The number of topics (clusters) and the proportion of vocabulary that create
each topic (the number of words in a cluster) are considered as two hidden
variables of the model. The conditional distribution of these variables, given
an observed set of documents, is regarded as the main challenge of the model.

Griffiths and Steyvers in 2004, applied a derivation of the Gibbs sampling
algorithm for learning LDA models [9]. They showed that the extracted topics
capture a meaningful structure of the data. The captured structure is consis-
tent with the class labels assigned by the authors of the articles that composed
the dataset. The paper presents further applications of this analysis, such as
identifying hot topics by examining temporal dynamics and tagging some ab-
stracts to help exploring the semantic content. Since then, the Gibbs sampling
algorithm was shown as more efficient than other LDA training methods, e.g.,
variational EM and Expectation-Propagation [12]. This efficiency is attributed
to a famous attribute of LDA namely, ”the conjugacy between the Dirichlet
distribution and the multinomial likelihood”. This means that the conjugate
prior is useful, since the posterior distribution is the same as the prior, and it
makes inference feasible; therefore, when we are doing sampling, the posterior
sampling become easier. Hence, the Gibbs sampling algorithms was applied
for inference in a variety of models which extend LDA [19], [7], [4], [3], [11].

Recently, Mimno et al. presented a hybrid algorithm for Bayesian topic
modeling in which the main effort is to combine the efficiency of sparse Gibbs
sampling with the scalability of online stochastic inference [13]. They used
their algorithm to analyze a corpus that included 1.2 million books (33 billion
words) with thousands of topics. They showed that their approach reduces
the bias of variational inference and can be generalized by many Bayesian
hidden-variable models.

3. DATASETS

The first dataset that we prepared for our experiments consists in threads
from the FriendFeed social network. We collected main postings (12,450,658)
and their corresponding comments (3,749,890) in order to obtain all the dis-
cussion threads (a thread consists in a message and its follow up comments).
We filtered out the threads with less than three comments. We were left with
24,000 threads. From these, we used 4,000 randomly-selected threads as back-
ground source of data, in order to build the LDA model. We randomly selected
500 threads and manually annotated them with 10 general classes®, to use as
training and test data for the classification. The 10 classes are: consumers,

2We used only one annotator, but we had a second annotator check a small subset, in order
to validate the quality of annotation. In future work, we plan to have a second annotator
label all the 500 threads.
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Class No. of Training Docs | No. of Test Docs | Total
Acq 1596 696 2292
Earn 2840 1083 3923
Grain 41 10 51
Interest 190 81 271
Money-fx 206 87 293
Ship 108 36 144
Trade 251 75 326
Crude 253 121 374
Total 5485 2189 7674

TABLE 1. Class distribution of training and testing data for RS.

education, entertainment, life_stories, lifestyle, politics, relationships, religion,
science, social_life and technology.

The second dataset that we chose for our experiments is the well-known R8
subset of the Reuters-21578 collection (excerpted from the UCI machine learn-
ing repository), a typical text classification benchmark. The data includes the
8 most frequent classes of Reuteres-21578; hence the topics that will be con-
sidered as class labels in our experiments are acq, crude, earn, grain, interest,
money, ship and trade.

In order to follow the Sebastiani’s convention [16], we also call the dataset
R8. Note that there is also a R10 dataset, and the substantial difference
between R10 and RS8 is that the classes corn and wheat, which are closely
related to the class grain, were removed. The distribution of documents per
class and the split into training and test data for the R8 subset is shown in
Table 1.

4. METHOD

We trained LDA models for each of the two datasets: one model on 4000
threads from FriendFeed and one model on all the R8 text data. LDA models
have two parameters whose values need to be chosen experimentally: the num-
ber of topic clusters and the number of words in each cluster. We experimented
with various parameter values of the LDA models.

For the first dataset, the best classification results were obtained by setting
the number of cluster topics to 50, and the number of words in each cluster
to maximum 15.

In LDA models, polysemous words can be member of more than one topi-
cal cluster, while synonymous words are normally gathered in the same topics.
An example of LDA topic cluster for the first model is: ”Google”, ”email”,
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”search”, "work”, "site”, ”services”, "image”, ”click”, ”page”, ”create”, ” con-

tact”, ”connect”, "buzz”, ”Gmail”, "mail”. This could be labeled as Internet.

As mentioned, our 500 threads were manually annotated with the 10
generic classes. These classes, enumerated in section 3, are a manually gener-
alized version of the 50 LDA clusters into the 10 generic categories. For the
above example, the annotator placed it under the technology and social_life
categories. The classification task is therefore multi-class, since a thread can
be in more than one class. We trained binary classifiers from Weka [20] for
each class, and averaged the results over all classes.

The manual mapping of LDA clusters into generic classes would allow us
to automatically annotate more training data form the FriendFeed dataset, in
our future work. Since each document has LDA clusters that were associated
to it during the Gibbs sampling process, the generic classes for these clusters
can be obtained, and one or more labels can be assigned to the document.
Only the labels with high LDA weights will be retained. If the weights are low
for all labels, the document would not be added to the training data. If more
than one label has high weight, the document would have multiple labels. This
process would allow us to add a large amount of training data, perhaps with
some noise. For more details see [15].

For the classification task, we chose several classifiers from Weka: Naive
Bayes (NB) because it is fast and works well with text, SVM since it is known
to obtain high performance on many tasks, and decision trees because we can
manually inspect the learned tree.

We applied these classifies on simple bag-of-words (BOW) representation,
on LDA-based representations of different granularities, and on an integrated
representation concatenating the BOW features and the LDA features. The
values of the LDA-based features for each document are the weights of the
clusters associated to the document by the LDA model (probability distribu-
tions).

5. EXPERIMENTS AND RESULTS

The results on the first dataset are presented in Table 2. After stop-
word removal and stemming, the bag-of-words (BOW) representation con-
tained 6573 words as features (TF-IDF values). The lower-dimensional repre-
sentation based on LDA contained 50 features, whose values are the weights
corresponding to the topic clusters. For the combined representation (BOW
integrated with the LDA topics) the number of features was 6623.

We observed that the 10 class labels (general topics) are distributed un-
evenly over the dataset of 500 threads, in which we had 21 threads for the class
consumers, 10 threads for education, 92 threads for entertainment, 28 threads
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Representation / Classifier Accuracy
BOW(TF-IDF)/ CompNB 77.22%
LDA Topics / Adaboost (j48) 69.32%
BOW(TF-IDF)+LDA / SVM(SMO) | 80.00%

TABLE 2. Results on the FriendFeed dataset.

for incidents, 90 threads for lifestyle, 27 threads for politics, 58 threads for
relationships, 31 threads for science, 49 threads for social_activities, and 94
threads for technology. Thus, the baseline of any classification experiment
over this dataset may be considered as 18.8%, for a trivial classifier that puts
everything in the most frequent class, technology. However, after balancing the
above distribution through over/under sampling techniques, the classification
baseline lowered to 10%.

On this dataset, we conducted the classification evaluations using strati-
fied 10-fold cross-validations (this means that the classifier is trained on nine
parts of the data and tested on the remaining part, then this is repeated 10
times for different splits, and the results are averaged over the 10 folds). We
performed several experiments on a range of classifiers and parameters for
each representation, to check the stability of a classifier’s performance. We
changed the seed, a randomization parameter of the 10-fold cross-validation,
in order to avoid the accidental over-fitting.

For the BOW representation, the best classifier was Complement Naive
Bayes (a version of NB that compensates for data imbalance), with an accu-
racy of 77.22%. Using the low-dimensional LDA representation, the accuracy
goes down, but it has the advantage that the classifiers are faster and other
classifiers could be used (that do not usually run on high-dimensional data).
Combining the two representations achieved the best results, 80% accuracy.

The results on the second dataset, R8, are shown in Table 3. We experi-
mented with several parameters for the LDA model: 8, 16, 32, 64, 128, and 256
for the number of clusters (therefore we build 6 models). We chose 20 words in
each cluster. The reason we started with 8 clusters is that there are 8 classes
in the annotated data. We experimented with combinations of the models in
the feature representation (a multi-leveal LDA-based representation), leaving
up to the classifier to choose an appropriate level of generalization.

After stopword removal and stemming, the BOW representation (TF-IDF
values) contained 17387 words as the feature space. We experimented with
each LDA representation separately, without good results; therefore we chose
a combined 6-level representation (corresponding to the LDA models with 256,
128, 64, 32, 16, 8 clusters). For the integrated representation BOW with LDA
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Representation / Classifier | Accuracy
BOW / SVM 93.33%
LDA Topics / SVM 95.89%
LDA+BOW / SVM 97.03%
BOW / NB 95.20%
LDA Topics / NB 94.61%
LDA+BOW / NB 95.52%
BOW / DT 91.54%
LDA Topics / DT 91.78%

TABLE 3. Results on the R8 dataset.

topics we had 17891 features (256 + 128 + 64 + 32 + 16 + 8 = 504, plus the
17387 words).

The average classification accuracy is very high, compared to a baseline
of 51% (of a simplistic 8-way classifier that always chooses the most frequent
class, earn in this dataset). The SVM and NB classifiers achieved the best
results. These values are in line with state-of-the art results reports in the lit-
erature. We can compare our results with other reported classification results
of the same dataset. According to the best of our knowledge, the accuracy
of our integrated representation method on the Reuters R8 dataset, 97%, is
higher than any simple and combinatory representation method from related
work, which reports accuracies of 88%-95% [6], [1], [5], while 96% was reached
with SVM on a complex representation method based on kernel functions and
Latent Semantic Indexing [21].

For SVM, the LDA-based representation achieved better accuracy (95.89%)
than the BOW representation (93.33%). This is due to the multi-level repre-
sentation. When we experimented with each level separately, the accuracies
dropped considerably. The best results over all the experiments were for SVM
with the combined BOW and LDA-based representation.

6. CONCLUSIONS AND FUTURE WORK

As our experimental results show, we can achieve good classification results
by using a low-dimensional representation based on LDA. This representation
has the advantage that allows the use of classifiers or clustering algorithms
that cannot run on high-dimensional feature spaces. By using a multi-level
representation (different generalization levels) we achieved better results than
the BOW representation on the second dataset. In future work, we plan to test
the multi-level representation on the first dataset, to confirm our hypothesis
that it is better to let classifiers choose the appropriate level of generalization.
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The combined BOW and LDA features representation achieved the best
classification performance, and it can be used when there memory is not a
concern, for classifiers that are able to cope with the large vector spaces.

Our results show that the first dataset is more difficult to classify than the
second dataset. The reason is that it consists in social media texts, which are
very noisy. In future work, we plan to experiment with more training data
for the FriendFeed dataset (automatically annotated via the mapping of LDA
clusters into the 10 classes), and to design representation and classification
methods that are more appropriate for this kind of data.
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