
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 1, 2013

TOWARDS A REGION-BASED CALCULUS FOR

ENERGY-AWARE PROGRAMMING

FLORIN CRĂCIUN, SIMONA MOTOGNA, AND BAZIL PÂRV

Abstract. Energy efficiency has become one of the most critical software
metric both for cloud computing servers as well as for mobile phones, ipads
or sensor networks. Much of the research on the reducing energy consump-
tion has been focused on low-power architectures, operating systems and
compiler optimizations. Recent studies have been started to explore how
programming language technologies can help reason about energy man-
agement. In this context our paper discusses how our region calculus used
before to manage the heap memory can be adapted to control the energy
consumption.

1. Introduction

In the recent decade, energy-aware computing systems (e.g. mobile de-
vices, wireless sensor nodes, cloud computing servers) had a rapid evolution.
The transformation of mobile devices (especially smartphones and iPads) into
general-purpose computing platforms had an important impact on consider-
ing the energy as a first class design constraint for many software applications.
Saving energy can extend the battery lifetime and increase the mobility or can
reduce the maintenance costs of data-centers.

Much of the research on energy management has been focused on the
optimizations for the energy-aware execution of the software programs. The
optimization techniques (see [KM08] for a survey) have been developed at dif-
ferent layers of the compute stack (e.g. digital circuits, architecture, operating
systems and compilers). They are mainly dynamic approaches based on online
monitoring or offline profiling.

Recent studies have been started to explore how programming language
technologies can help reason about energy management. A new paradigm
energy-aware programming has been proposed in order to aid developers to

Received by the editors: March 16, 2013.
2010 Mathematics Subject Classification. 68Q60, 68N30.
1998 CR Categories and Descriptors. D.2.4 [Software]: Software engineering – Soft-

ware/Program Verification.
Key words and phrases. energy-aware programming, region calculus, program analysis.

93



94 FLORIN CRĂCIUN, SIMONA MOTOGNA, AND BAZIL PÂRV

write energy-efficient programs in the first place. Exposing energy consid-
erations at the programming language level can enable a new set of energy
optimizations and can allow the program to have a direct control of the en-
ergy management techniques from the lower layers of the compute stack.

This paper analyses the new paradigm approaches and discusses a possible
unification of them under a general region calculus for energy consumption
control. Section 2 introduces the concepts of our previous work on using
region calculus for memory management. Section 3 presents the challenges of
the new paradigm. Section 4 discusses our proposal while Section 5 concludes
the paper.

2. Region Calculus for Memory Management

Region types have been introduced to manage the heap memory at com-
pile time. Region-based memory management systems allocate each new ob-
ject into a program specified region, with the entire set of objects in each
region deallocated simultaneously when the region is deleted. The first safe
region-based memory system has been developed by Tofte and Talpin [TT94,
TT97] for a functional language. Later, several projects have investigated
the use of region-based memory management for C-like languages (e.g. Cy-
clone [GMJ+02]) and object-oriented languages [BSBR03].

In our previous work [Cra08, CCQR04, CQC08, SCC08], we have devel-
oped an automatic region type inference system for object-oriented paradigm.
Our compiler automatically augments unannotated object-oriented programs
with regions type declarations and inserts region allocation/deallocation in-
structions that achieve a safe memory management. Our work uses lexically-
scoped regions such that the memory is organised as a stack of regions. Regions
are memory blocks that are allocated and deallocated by the construct letreg r
in e, where the region r can only be used to allocate objects in the program e.
All objects allocated into a region have the same lifetime. Dangling references
are a safety issue for region-based memory management. Our work allows
only non-dangling references which originate from objects placed in a younger
region and point to objects placed either in an older region or inside the same
region. Relations between regions and non-dangling references conditions are
expressed as lifetime constraints between objects regions.

Recently, region assertions have also been used to control the possible
aliasing [ABB06] in information flow analyses. A new regional logic [BNR08,
RBN12] has been proposed to reason about mutation and separation, via
variables of type region (finite sets of object references).



TOWARDS A REGION-BASED CALCULUS FOR ENERGY-AWARE PROGRAMMING 95

3. Energy-Aware Programming Paradigm

Energy consumption is a combined effect of many hardware components
(such as CPUs, caches, DRAMs, I/O devices) which interact in complex ways.
Therefore energy consumption control is a challenging task for programmers.
Energy-aware programming paradigm proposes different programming models
and logical frameworks that can help developers to reason about energy con-
sumption. However developers are assumed to have minimal knowledge about
energy consumption. In general the new proposed programming models as-
sure an efficient and correct control of the hardware-level energy management
through special programming language constructions (e.g. special annota-
tions for types or special instructions). Analysing the recent approaches pro-
posed for energy-aware programming we have identified the following main
directions: programming using controlled approximations [SDF+11, LPMZ11,
BC10, CKMR12], programming using phased behaviours [CZSL12], and pro-
gramming according to the battery energy states [CZSL12, SKG+07].

3.1. Programming using Controlled Approximations. The key obser-
vation of this programming model is that the programs spend a significant
amount of energy guaranteeing correctness. However the programs have por-
tions that are more resilient to errors and portions that are critical and must
be protected from errors. Therefore non-critical portions of the programs can
save a significant amount of energy by using approximate computations. Ap-
proximate computations might consist of approximate storage (e.g. reducing
refresh power in DRAM memories [LPMZ11], unreliable registers and data
caches), approximate operations (e.g. instructions for approximate integer
ALU operations as well as approximate floating point operations) and algo-
rithmic approximation (e.g. approximation of the expensive functions and
loops [BC10]).

Distinguishing between the critical and non-critical portions of a program
is the main challenging task of this programming model. EnerJ [SDF+11]
proposes a type system that isolates the precise portion of the program from
the approximate portion. That means it prevents a direct flow of data from
approximate to precise variables. It also allows programmers to compose pro-
grams from approximate and precise components safely. Later a more com-
plete architectural support for approximate programming has been developed
in [ESCB12]. Recently, a relational assertion logic [CKMR12] has been pro-
posed to express and verify the properties of program approximations.

3.2. Programming using Phased Behaviours. The key observation of
this programming model is that different program fragments have distinct
patterns of CPU usage, memory accesses, cache misses, and I/O operations



96 FLORIN CRĂCIUN, SIMONA MOTOGNA, AND BAZIL PÂRV

which lead to a distinct pattern of energy consumption. Therefore a program
usually have phased behaviours of energy consumption. The rate of energy
consumption is steady within a phase but different across.

Bottom (oldest region)

r2

r4

r3

Top (youngest region)

r1

possible dangling reference 

non−dangling reference 

r0

Figure 1. Lexically-
Scoped Regions

The main challenging task of
this programming model is to deter-
mine the number of phases and the
boundary of each of them. Energy
types [CZSL12] allow the program-
mer to specify phased behaviours by
using phase type annotations. The
type system can enforce the phase
distinction (each data and opera-
tion must commit to only one phase)
and the phase isolation (any cross-
phase interaction can be done only
with type coercion). Phase type in-
formation can control the CPU dy-
namic voltage and frequency scaling
(DVFS). DVFS is based on the ob-
servation that is most advantageous
to scale down the CPU frequency (such that energy can be saved) when the
CPU is least busy (such that the performance is the least affected). The chal-
lenging task for applying DVFS is to choose the right scaling point and the
right scaling factor. In this case the solution reduces to finding the appropriate
boundaries for the phases.

3.3. Programming according to the Battery Energy States. The key
observation of this programming model is that the different choices to imple-
ment an application may consume different levels of energy and be best used
in different battery energy states.

The main challenging task of this programming model is to adapt the
program to the available energy. Energy types [CZSL12] uses mode type
annotations to indicate the expected energy usage context associated with
specific data or operations. In [SKG+07] a coordination language is proposed
in order to dynamically adapt the system to available energy.

4. A Unified Region Calculus for Energy Management

In this section we propose a general region calculus for both data and
code that can unify all three energy-aware programming models presented in
Section 3. This proposal extends our region calculus used before to manage the
heap memory at compile time [Cra08]. First we illustrate our previous region



TOWARDS A REGION-BASED CALCULUS FOR ENERGY-AWARE PROGRAMMING 97

calculus by a simple Java code example and then we analyse the modifications
of our calculus to support energy-aware programming models.

Our region calculus uses lexically-scoped regions such that the heap mem-
ory is organised as a stack of regions, as illustrated in Figure 1. Regions are
memory blocks that are allocated and deallocated by the construct letreg r in e,
where the region r can only be used to allocate objects in the program e. The
older regions (with longer lifetime) are allocated at the bottom of the stack
while the younger regions (with shorter lifetime) are at the top.

letreg r4 in {

Pair p;

Object a,b;

...

a = new Object<ra>();

b = new Object<rb>();

p = new Pair<r4>(a,b);

...

}

Figure 2. Memory
Regions Example

Dangling references are a safety
issue for region-based memory
management. Figure 1 shows two
kinds of references: non-dangling
references and possible dangling
references. Non-dangling references
originate from objects placed in a
younger region and point to objects
placed either in an older region or
inside the same region. Possible
dangling references occur when ob-
jects placed in an older region point
to objects placed in a younger re-
gion. They turn into dangling ref-
erences when the younger region is
deallocated. Using a dangling reference to access memory is unsafe because
the accessed memory may have been recycled to store other objects. There
are two approaches to eliminating this problem. The first approach allows the
program to create dangling references, but uses an effect-based region type
system to ensure that the program never accesses memory through a dan-
gling reference. The second approach uses a region type system to prevent
the program from creating dangling references at all. Our work has adopted
the second approach. Let us consider the example of Figure 2, the Pair ob-
ject is allocated in region r4 which is the top of the regions stack. The two
fields of the Pair p are allocated in two regions ra and rb which must be older
than or the same as r4. All the safety requirements are guaranteed by our
type system [Cra08]. In addition we have developed the first automatic region
type inference system for object-oriented paradigm [Cra08]. Our compiler
automatically augments unannotated object-oriented programs with regions
type declarations and inserts region allocation/deallocation instructions that
achieve a safe memory management.



98 FLORIN CRĂCIUN, SIMONA MOTOGNA, AND BAZIL PÂRV

In this proposal we assume that the regions for energy management are
manually introduced by the programmers while our energy type systems guar-
antees the appropriate safety conditions for using energy regions.

4.1. Programming using Controlled Approximations. In order to dis-
tinguish between the critical and non-critical fragments (both code and data)
of the programs we use two kinds of regions: approximate regions and pre-
cise regions. By default, when no region is explicitly given, the code and the
data are in a precise region. Therefore the programmers have to introduce the
region programming constructions only for the approximate data and compu-
tations. In general an approximate region unifies approximate data storage,
approximate computation and approximate algorithms.

letreg rApprox in {

int a,c;

Object b;

...

b = new Object();

a = c+a;

x = f(y);

...

}

Figure 3. Approximate
Regions Example

Let us consider the exam-
ple from Figure 3 where the
region rApprox denotes an ap-
proximate program fragment.
Therefore all the variables de-
clared inside this region (e.g.
a, c), all the memory alloca-
tions done inside this region
(e.g. b), and all the operators
computations done inside this
region must be approximate.
In the case of a function call
that is executed inside of an
approximate region (e.g. f(y),
its computation can be done
according to the regions of the function body. However the function call
result is stored in an approximate variable (x in our example). Our model is
portable, the compiler is entirely responsible for choosing the energy-saving
mechanisms for approximate data and computations from an approximate re-
gion. The safety requirement that must be guaranteed by our type system is
that the approximate data cannot affect precise data. However it is important
that data be occasionally allowed to break the strict separation enforced by
the type system. Therefore our region model provides a special construction
that allows the programmers to control explicitly when approximate data can
affect precise state.

4.2. Programming using Phased Behaviours. In this energy program-
ming model our energy regions denote the energy states of the different hard-
ware components whose energy consumption contributes to the energy con-
sumption of the programs. In this proposal we restrict our region calculus to



TOWARDS A REGION-BASED CALCULUS FOR ENERGY-AWARE PROGRAMMING 99

CPU states such that our energy regions represent the CPU frequencies. For
example we can have the regions rH, rM, and rL to denote three different fre-
quencies for a CPU: high, medium and low respectively. The programmers can
choose different regions for different program fragments execution according
to the characteristics of those program fragments.

letreg rH in {

c=1;

while (c < 10000){

...

//CPU intensive operations

...

}

...

letreg rL in {

...

//I/O operations

...

}

c=1;

while (c < 10000){

...

//CPU intensive operations

...

}

...

}

Figure 4. CPU Frequency
Regions Example

Let us consider the exam-
ple from Figure 4 where the
region rH is used for CPU
intensive operations while rL
is used for I/O operations.
Our letreg construction cor-
responds to two instructions:
the first which set the CPU
frequency at the beginning
of the block and the second
which restore the previous
CPU frequency at the end of
the block. The safety require-
ment for this model refers to
the proper usage of the CPU
frequencies. A proper usage of
CPU frequencies means to re-
duce the energy consumption
without significantly affecting
the execution time. It is very
difficult to statically guaran-
tee this safety requirement.

4.3. Programming accord-
ing to the Battery Energy
States. In this model the en-
ergy regions correspond to the
battery energy states. Since
the battery state cannot be known at compile time these regions are runtime
regions. However we can use a special construction (implemented in a special
library) that can check the battery state in order to introduce the regions
at the compile time. An illustrative example is given in Figure 5. The pro-
grammers can choose the code that will be executed according to the battery
status. The safety requirement here is to not allow a transition from a low
status region to a high status region without an explicit check/change of the
battery status.



100 FLORIN CRĂCIUN, SIMONA MOTOGNA, AND BAZIL PÂRV

5. Concluding Remarks and Future Work

if (batteryState()==High_State){

letreg rH in {

...

}

}else {

letreg rL in {

...

}

}

Figure 5. Battery State Re-
gions Example

In this paper we analised
the new energy-aware pro-
gramming paradigm, we iden-
tified the programming mod-
els of the new paradigm and
we discussed the challenges of
these models. As a solution
we proposed a general unified
region calculus based on our
previous work on region-based
memory management. Our
intention is to formalize the
proposed calculus and to de-
velop an energy type system
that can enforce the energy
safety requirements for all the programming models of the new paradigm. We
also like to develop a compile-time energy evaluation model that can guide the
programmers to find the appropriate places for energy regions in a program.
Our work is a small step towards designing programming models for energy
efficiency.

Acknowledgment

This work was possible with the financial support of the Sectoral Opera-
tional Program for Human Resources Development 2007-2013, co-financed by
the European Social Fund, within the project POSDRU 89/1.5/S/60189 with
the title Postdoctoral Programs for Sustainable Development in a Knowledge
Based Society.

References

[ABB06] Amtoft, T., Bandhakavi, S., and Banerjee, A. A logic for information flow in
object-oriented programs. In POPL, pages 91–102. ACM, 2006.

[BC10] Baek, W. and Chilimbi, T. M. Green: a framework for supporting energy-
conscious programming using controlled approximation. In PLDI, pages 198–209.
ACM, 2010.

[BNR08] Banerjee, A., Naumann, D. A., and Rosenberg, S. Regional logic for local rea-
soning about global invariants. In ECOOP, pages 387–411. 2008.

[BSBR03] Boyapati, C., Salcianu, A., Beebee, W., Jr., and Rinard, M. Ownership types
for safe region-based memory management in real-time java. In PLDI, pages
324–337. ACM, 2003.

[CCQR04] Chin, W.-N., Craciun, F., Qin, S., and Rinard, M. C. Region inference for an
object-oriented language. In PLDI, pages 243–254. ACM, 2004.



TOWARDS A REGION-BASED CALCULUS FOR ENERGY-AWARE PROGRAMMING101

[CKMR12] Carbin, M., Kim, D., Misailovic, S., and Rinard, M. C. Proving acceptability
properties of relaxed nondeterministic approximate programs. In PLDI, pages
169–180. ACM, 2012.

[CQC08] Craciun, F., Qin, S., and Chin, W.-N. A formal soundness proof of region-based
memory management for object-oriented paradigm. In ICFEM, pages 126–146.
2008.

[Cra08] Craciun, F. Advanced Type Systems for Object-Oriented Languages. PhD Thesis,
National University of Singapore, 2008.

[CZSL12] Cohen, M., Zhu, H. S., Senem, E. E., and Liu, Y. D. Energy types. In OOPSLA,
pages 831–850. ACM, 2012.

[ESCB12] Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. Architecture support
for disciplined approximate programming. In ASPLOS, pages 301–312. ACM,
2012.

[GMJ+02] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Cheney, J.
Region-based memory management in cyclone. In PLDI, pages 282–293. ACM,
2002.

[KM08] Kaxiras, S. and Martonosi, M. Computer Architecture Techniques for Power-
Efficiency. Morgan and Claypool Publishers, 1st edition, 2008.

[LPMZ11] Liu, S., Pattabiraman, K., Moscibroda, T., and Zorn, B. G. Flikker: saving
dram refresh-power through critical data partitioning. In ASPLOS, pages 213–
224. ACM, 2011. ISBN 978-1-4503-0266-1.

[RBN12] Rosenberg, S., Banerjee, A., and Naumann, D. A. Decision procedures for region
logic. In VMCAI, pages 379–395. 2012.

[SCC08] Stefan, A., Craciun, F., and Chin, W.-N. A flow-sensitive region inference for
cli. In APLAS, pages 19–35. 2008.

[SDF+11] Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Gross-
man, D. Enerj: approximate data types for safe and general low-power compu-
tation. In PLDI, pages 164–174. ACM, 2011.

[SKG+07] Sorber, J., Kostadinov, A., Garber, M., Brennan, M., Corner, M. D., and Berger,
E. D. Eon: a language and runtime system for perpetual systems. In SenSys,
pages 161–174. ACM, 2007.

[TT94] Tofte, M. and Talpin, J.-P. Implementation of the typed call-by-value lambda-
calculus using a stack of regions. In POPL, pages 188–201. 1994.

[TT97] Tofte, M. and Talpin, J.-P. Region-based memory management. Inf. Comput.,
132(1997)(2):109–176.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: craciunf@cs.ubbcluj.ro,motogna@cs.ubbcluj.ro,bparv@cs.ubbcluj.ro


