
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 1, 2013

A STUDY ON ASSOCIATION RULE MINING BASED

SOFTWARE DESIGN DEFECT DETECTION

ZSUZSANNA MARIAN

Abstract. In this paper we are investigating the effect of parameter vari-
ations for a method we have previously introduced for detecting software
design defects. This method uses software metrics and relational associa-
tion rules to find badly designed classes. We perform five different studies,
to see the effect of using normalized or original software metric values,
the effect of mining only binary or any-length rules, the effect of mining
only maximal or all rules and the effect of changing the value of the mini-
mum support for the rules. We are also investigating the changes caused
by modifying the value of the parameter that determines which classes to
report as having bad design.

1. Introduction

Software systems developed and used in our days are more and more com-
plex, because the tasks they have to solve are getting more and more complex
as well. In these systems both maintenance and the addition of new features
is a complicated task, which is even more complicated if the system has a
bad design. This is why different techniques exist that try to identify design
defects in a system, in order to correct them, thus making maintenance easier.

In [3] we have presented a novel method for design defect detection, called
Software Design Defect detection using Relational Association Rules or SD-
DRAR. This approach uses software metrics, which are often used for software
design defect detection, but it also uses Relational Association Rules, a par-
ticular type of association rules, which were not used so far for this task.

We have provided six different open source case studies in [3], to show the
effectiveness of our method. We have also presented some similar approaches
form literature and compared the SDDRAR method to them. In this paper,

2010 Mathematics Subject Classification. 68P15, 68N99.
1998 CR Categories and Descriptors. H.2.8 [Database Management]: Database Ap-

plications - Data Mining; D.2.10 [Software Engineering]: Design;
Key words and phrases. Relational association rules, Software metrics, Design defect

detection.

42

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 43

we intend to present a study performed with different parameter settings for
our method. We want to investigate the following aspects:

• Using the original or normalized values for software metrics.
• Using binary relational association rules or using relational association
rules of any length.

• Using only maximal relational association rules, or using all mined
rules.

• The effect of modifications for the τ parameter and the minimum con-
fidence on the prediction accuracy.

The rest of the paper is structured as follows: Section 2 presents the theo-
retical background for the SDDRAR approach, presenting Relational Associa-
tion Rules (Section 2.1), the used software metrics (Section 2.2), the SDDRAR
method (Section 2.3) and the open source projects used for testing (Section
2.4). Section 3 presents the studies performed with different variations of the
parameters. Section 4 briefly presents some similar approaches and compares
our method to them, while Section 5 concludes the paper.

2. Background

In this section we will present the main theoretical background of the
SDDRAR method. A more detailed description was given in [3].

2.1. Relational Association Rules. Relational association rules are an ex-
tension of regular association rules and are able to capture different types of
relationships between record attributes. They were introduced in [16], and
can be formally defined in the following way: let R = {r1, r2, ..., rn} be a set
of instances, where each instance is characterized by a vector of m attributes:
ri = {a1, a2, ..., am}. Each attribute ai takes value from the domain Di, and
the value of an attribute ai in an instance rj is denoted by Φ(rj , ai). Between
two domains Di and Dj different relations can be defined, for example equal,
less than, greater than, etc. We denote by M the set of all possible relations
that can be defined on DixDj .

Using the notations presented above, a relational association rule is of the
form (ai1 , ai2 , . . . , ail) ⇒ (ai1 µ1 ai2 µ2 ai3 . . . µl−1 ail) where {ai1 , . . . , ail} ⊆
A = {a1, a2, ..., am}, aij ̸= aik , j, k = 1..l, j ̸= k and µi ∈ M is a relation over
Dij ×Dij+1 , Dij being the domain of attribute aij .

Like regular association rules, relational association rules are also charac-
terized by two values, support and confidence, defined in the following way:

• If ai1 , ai2 , . . . , ail occur together (are non-empty) in s% of the instances,
we call s the support of the rule.

44 ZSUZSANNA MARIAN

• If R′ ⊆ R is the set of instances where ai1 , ai2 , . . . , ail occur together
and Φ(r′, ai1) µ1 Φ(r′, ai2) µ2 Φ(r′, ai3) . . . µl−1 Φ(r′, ail) is true for

each instance r′ ∈ R′, we call c = |R′|
|R| the confidence of the rule.

Another value that characterizes a relational association rule is its length,
which is the number of attributes in the rule. The minimum possible length
for a rule is 2, while the maximum possible length is the number of attributes.

In a dataset many association rules can be found, so usually only those
are mined which have support and confidence higher than some user specified
threshold, smin and cmin. These rules are also called interesting. In [3] we
have introduced an A-Priori [1] like algorithm, called DRAR, which can find
all the interesting relational association rules in a dataset. Also, the algorithm
can be configured to find only the maximal interesting relational association
rules (rules which cannot be further extended with an attribute, because they
will no longer be interesting) in the dataset.

2.2. Software Metrics. In order to mine relational association rules from
a dataset, one needs a set of instances, where each instance is actually a
vector of attributes. In our model, the instances were classes of the software
system, while the attributes that characterize these instances are the values
of different software metrics. The set of software metrics is denoted by SM =
{sm1, sm2, . . . , smk}. So, we consider a software system S as being a set of
instances (classes) S = {s1, s2, . . . , sn}, where each instance si is represented
as a k-dimensional vector si = {si1 , si2 , . . . , sik}, where sij is the value of the
software metric smj for the instance si.

We have identified in [10] a set of 16 software metrics that measure the
size, cohesion and coupling in a software system. After performing some sta-
tistical analysis on this set in [3], after which we eliminated 4 of them, the set
of software metrics became SM = {CBO,DAC, ICH, INS,LCC,LCOM1,
LCOM2, LCOM4, LCOM5, LD,MPC,NOA}. A description of these met-
rics and the statistical analysis approach performed are presented in [3].

2.3. The SDDRAR method. The aim of the SDDRAR method is to iden-
tify classes with design defect in a software system, using relational association
rules. It has three different steps, which will be presented briefly in this sec-
tion.

• Data collection and pre-processing.
• Building the SDDRAR model
• Testing

In the first step, Data collection and pre-processing, a set Sgood of well-designed
software systems is collected. Next, the k-dimensional representation of the
classes (entities) from these software systems is built, denoted byDS, using the

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 45

set of software metrics presented in Section 2.2. Then, the already mentioned
statistical analysis on the set of initial software metrics is performed.

During the second step, Building the SDDRAR model, all interesting rela-
tional association rules of any length are discovered in the DS dataset. The
relations used between the attributes are ≤ and ≥ and are not defined for
metrics with the value 0. These rules, kept in a set called RAR, will be used
to identify classes (entities) with bad design in other software systems.

The last step, Testing, is the most complex. In this step, a new software
system, Snew has to be analyzed to detect those entities that have a bad design.
First, the k-dimensional representation of the classes from Snew is built (using
the same software metrics as above). Then, for each entity ei ∈ Snew the
number of errors, err(ei), is computed, as the number of relational association
rules from RAR that are not verified by the k-dimensional representation of the

entity. Next, the percentage of error, pe(ei), is computed, as: pe(ei) =
err(ei)
|RAR| .

After this, the set of potential errors, Pτ , is determined, containing those
entities, for which pe(ei) is greater than a user specified threshold, τ . We have
two possible cases:

(1) If this set is empty, a threshold ϵ is computed as the sum between
the mean and the standard deviation of the non-zero number of errors
for all entities. The SDDRAR method will report as ill structured
software entities in Snew the ones which have err(e) > ϵ.

(2) If Pτ is not empty, than the average number of errors of the entities
from Pτ , avg, is computed and the algorithm will report as ill struc-
tured software entities the ones, for which err(e) > avg.

2.4. Open source projects used. In this section we will shortly present
those open source projects that were used in [3] and will be used in this pa-
per, too. First, as presented above, the SDDRAR method needs a set of well
designed software systems, Sgood, in order to build the set of relational associa-
tion rules. In our current implementation this set contains one single element,
the JHotDraw [5] software system, built by Erich Gamma and Thomas Eggen-
schwiler. It is considered an example of good design and use of design patterns.
It consists of 173 classes, out of which only 132 are used, because the rest are
interfaces, for which the value of some metrics cannot be computed.

We have also used 6 different systems for testing our method: two simple
artificial examples and 4 open source systems, taken from the SourceForge
repository. For these 4, we have also considered consecutive versions, to see
how reported classes and the number of errors change as the project evolves.
These 4 systems are the following:

46 ZSUZSANNA MARIAN

• FTP4J, [4], a Java implementation of a full-featured FTP client. 4
consecutive versions were considered, 1.5, 1.5.1, 1.6, 1.6.1, each having
27 classes (and 8 interfaces which were not included in the analysis).

• ISO8583, [6], an implementation of the ISO 8583 protocol in Java.
Three versions were used, 1.5.2, 1.5.3, 1.5.4, each containing 21 classes
(and 2 interfaces).

• Profiler4J, [15], a CPU profiler for Java, which supports remote profil-
ing and on-the-fly configuration. From the two jar files of the project,
we used four versions of the agent.jar file: 1.0-alpha5, 1.0-alpha6, 1.0-
alpha7 and 1.0-beta1. The first two versions have 18 classes, while the
last two have only 15.

• WinRun4J, [17], a Windows native launcher for Java applications. Five
consecutive versions were analyzed, 0.4.0, 0.4.1, 0.4.2, 0.4.3 and 0.4.4.
The first three versions have 21 classes, while the last two have 24.

All projects (including JHotDraw) were analyzed using the ASM 3.0 bytecode
manipulation framework [2]. We use this framework to extract a representa-
tion of a software system containing classes, methods and attributes and the
relations between them. This representation is then used to compute the value
of the software metrics for the classes.

3. Study on the parameter variations

The SDDRAR method presented in Section 2.3 has many different param-
eters, whose value can influence the results. For example, the parameters of
the relational association rule mining algorithm are the smin and cmin values,
but also whether the algorithm should find only binary rules or rules of any
length, or whether all mined rules should be kept, or only the maximal ones.
Related to the software metrics, one parameter is, whether the original or the
normalized value of the metrics should be used for the relational association
rule mining. And for the SDDRAR algorithm, the value of τ is very important,
because this is the one that determines the reported classes. In this section
we will present some experiments and analysis of the results, when changing
the values of these parameters. The first three experiments were performed
with cmin = 0.85 and smin = 0.9.

3.1. Normalized vs. Original software metrics values. The first test we
are going to execute is to see how using normalized or non-normalized (called
original) software metrics values influences the results of the algorithm.

After computing the values of the software metrics for the JHotDraw sys-
tem (both normalized and original values), we ran our algorithm to extract
the set of maximal relational association rules of any length. The number of

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 47

rules for each length and the total number of rules for both cases can be seen
in the first two columns of Table 1.

Table 1. Number of rules for different rule mining settings for
the jHotDraw system.

Length Normalized, Any-length, Original Binary All-mined
Maximal

2 0 0 14 14
3 21 5 0 39
4 4 6 0 22
5 16 160 0 18
6 1 0 0 1

Total 42 171 14 94

We have also divided the relational association rules into simple binary
rules, to see which pairs make up the longer rules. The exact pairs are omitted
because of lack of space, but analyzing them, we observed that there is only
one rule which is common (LCOM5 ≤ LD), but there are six rules which
appear with one relation when using the original values, and appear with
the inverse relation, when normalized values are used. Also, the presence of
some of the rules for the original metric values is easy to understand. The
12 software metrics used can be divided into two categories: metrics whose
value is between 0 and 1 (ICH, INS, LCC, LCOM5 and LD), and metrics
whose value can be greater than 1 (CBO, DAC, LCOM1, LCOM2, LCOM4,
MPC and NOA). When the metric values are not normalized, it is logical to
have many cases when the value of a metric from the first category is less
than the value of a metric from the second category. Indeed, if we check the
rules for the original values, we can see that for 12 out of the 19 rules this is
the case, while for normalized values there is no such rule. This shows that
the relational association rules found for the original values uncover a lot less
hidden patterns in data than the normalized values.

The mined rules were used to find badly designed classes in the FTP4J
software system, version 1.5, with τ = 0.8. The reported classes are presented
in the first two columns of Table 2. We can see, that the two variants report
very different results. As presented in [3], the FTPClient class should be
reported, because it is a God Class, having above 3500 lines of code (with
comments), 34 attributes (second highest value in the system being 7) and
84 methods (second highest is 15). If we verify the classes reported when
using the original metric values, we can see that classes Base64OutputStream,
SOCKS4Connector and SOCKS5Connector should not be reported, because

48 ZSUZSANNA MARIAN

they are not badly designed. The reason why they are reported is that they use
no other class from the system, so their CBO and MPC values are 0, causing a
lot of errors. The class FTPFile can be considered a Data Class (5 attributes,
and 11 methods - getters, setters and toString), but most of its errors are
because of the CBO and MPC metrics, just like in case of the previous classes,
suggesting that there is no pattern in errors for finding Data Classes (and nor
for God Classes, because FTPClient was not identified either).

Table 2. Classes reported by the SDDRAR method for the
FTP4J system for different parameter settings.

Normalized Original Binary All-mined
Any-length
Maximal
FTPClient FTPFile FTPClient FTPClient

Base64OutputStream DirectConnector
SOCKS4Connector FTPDataTransfer-
SOCKS5Connection Exception

Considering the above presented case study, we can conclude, that it is
better to use normalized software metric values, both because they predict
bad designs better, and because they can find hidden patterns in the metric
values better.

3.2. Binary vs. Any-length relational association rules. In this section
we will investigate the effect of using only binary, or any-length rules. First,
for the JHotDraw system, we have generated all maximal rules, once only the
binary ones, and after that rules of any length.The number of rules for each
length and the total number of rules for both cases can be seen on the first
and third column of Table 1.

Dividing the any-length rules in binary pairs, we get the exact same pairs
as for the normalized values in the previous Section (which is normal, because
they were mined from the same data). They are also the same rules mined
when only binary rules are considered. When using these rules to identify
badly designed classes in the FTP4J software system, version 1.5 and τ = 0.8,
in both cases a single class is identified: FTPClient (as it is presented in the
first and third column of Table 2). The difference is that when the binary
rules are used, case 1 from 2.3 has to be used (P0.8 = ∅). Although the results
are the same, both for binary and any-length relational association rules, we
think that using longer association rules is better, because the fact that a
binary relation can appear more than once in the set of rules, provides kind of
a weighting mechanism, making binary relations that appear more than once,

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 49

more important. For example, out of those classes from FTP4J which have
one error when using the binary rules, some have 2 errors when using longer
rules, while others have 9, meaning that they broke relations, which appear in
more rules, so they can be considered more important. So, we conclude that
it is better to use longer relational association rules.

3.3. Maximal vs. All-mined relational association rules. In this section
we will investigate the effect of using only the maximal relational association
rules, or using all the mined rules, even if later they were extended with other
metrics. The number of such rules in the jHotDraw system is presented in the
last column of Table 1.

The results of using these rules for finding badly designed classes in the
FTP4J software system, version 1.5, with τ = 0.8 is presented in the last
column of Table 2. In case of the all-mined rules, P0.8 = ∅ , so case 1 from 2.3
is used.

As already presented above, the identification of the FTPClient class is
justified, because it is a God Class. The other two classes identified using all
the mined rules have the exact same errors, for the CBO, INS, LCOM1 and
LCOM4 metrics. Verifying the source code, we can see that these classes are
simple classes with 3 or 4 very short (one line) methods, but no design defect
can be found in them. So we can conclude that using only maximal rules is
better.

3.4. Changing the value of τ . In the previous three Sections, we have con-
ducted three different studies, and concluded that it is better to use normalized
software metric values for mining relational association rules, and that mining
any-length but only maximal rules gives better results. In this Section we will
investigate the effect of changing the value of τ , the parameter which deter-
mines which classes to report as badly designed. Also, instead of using only
one system, we are going to use all four software systems presented in 2.4 with
all their versions.

It is expected that lowering the value of τ will result in more classes being
reported as having errors, while increasing it will lead to less reported classes.
Although, if τ is too high, it might happen that Pτ = ∅ (case 1 from 2.3), which
can lead to a situation, when an increased τ leads to more reported classes.
After this point, increasing the value of τ will not give different results.

During the experiments we varied the value of τ from 0.2 to 0.8 − 0.95
(depending when we got to the point when there was no use increasing it
anymore) with increments of 0.05. The results (identified classes) are presented
on Tables 3, 4, 5 and 6. A star after the name of an identified class means that
it was identified using case 1 from 2.3. Cases when the result did not change

50 ZSUZSANNA MARIAN

for more consecutive values of τ are presented with the interval for which the
values are true.

Table 3. Identified classes for the FTP4J project for different
values of τ .

τ 1.5, 1.5.1, 1.6, 1.6.1
0.9 FTPClient*

0.85 - 0.25 FTPClient
0.2 FTPClient

DirectConnector
FTPDataTransferException

From Table 3 we can see that the results are quite stable, the value of τ
has to be decreased until 0.2 in order to report classes DirectConnector and
FTPDataTransferException, which, as presented in Section 3.3, are not badly
designed.

Table 4. Identified classes for the ISO8583 project for differ-
ent values of τ .

τ 1.5.2, 1.5.3, 1.5.4
0.95 MessageFactory*

0.9 - 0.65 MessageFactory
0.6 - 02 MessageFactory

ISOValue

From Table 4 we can see that when decreasing the value of τ to 0.6 (and
lower) a new class is reported, ISOValue. Although this class has some minor
design defects (for example calling the getters in the equals method, instead
of using the fields directly) there are no big problems with it.

Table 5 presents the classes reported for the Profiler4J project. In [3] we
have presented that the classes reported for τ = 0.8 (Server for version 1.0-
alpha5, MemoryInfo for version 1.0-alpha6 and Config for versions 1.0-alpha7
and 1.0-beta1) are justified. Server has too high coupling, MemoryInfo is a
Data Class (which actually disappears after version 1.0-alpha6) and Config can
be considered a Data Class, too. Besides these three classes, only ThreadInfo
is reported, but only for low values of τ . Checking the source code, we can see
that the class has many static methods, but does not really have errors.

Table 6 presents the classes reported for the WinRun4J system. In [3] we
considered the NativeBinder class as having smaller design defects (a too long

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 51

Table 5. Identified classes for the Profiler4J project for dif-
ferent values of τ

.
τ 1.0-alpha5 1.0-alpha6 1.0-alpha7, 1.0-beta1
0.9 Server* Config* Config*

MemoryInfo* MemoryInfo*
0.85 Server Config* Config*

MemoryInfo*
0.8 - 0.75 Server MemoryInfo Config
0.7 - 0.6 Server MemoryInfo Config

MemoryInfo
0.55 - 0.5 Server Config Config

MemoryInfo MemoryInfo
0.45 Config Config Config

Server MemoryInfo
MemoryInfo

0.4 - 0.3 Config Config Config
Server MemoryInfo ThreadInfo

ThreadInfo
MemoryInfo

0.25 - 0.2 Config Config Config
Server Server ThreadInfo

ThreadInfo ThreadInfo
MemoryInfo MemoryInfo

method, high coupling, etc.), instead of having just one main problem. For
τ = 0.6 and less, the class Launcher is also reported. It is a class with many
methods, and many overloaded methods, which call each other, as suggested
by the errors for the ICH metric. High value of LCOM1 metric (and many
errors related to this metric) suggest that the class is not really cohesive.
Another reported class is Closure, but besides having a really long method,
this class is fine. Finally, the FileVerb class reported for τ = 0.45 and lower,
is a Data Class.

Considering the results for the above presented four systems, we can say
that small differences in the value of the τ parameter will not result in big
changes in the classes. As we expected, lowering the value of τ will result
in more classes reported, but not a lot more. In [3] we have shown that the
results given for τ = 0.8 are correct (those classes indeed have problems), and
now we presented that most of the other classes reported (for lower values of

52 ZSUZSANNA MARIAN

Table 6. Identified classes for the WinRun4J project for dif-
ferent values of τ .

τ 0.4.0 - 0.4.4
0.8 - 0.75 NativeBinder*
0.7 - 0.65 NativeBinder
0.6 - 0.55 NativeBinder

Launcher
0.5 Closure

NativeBinder
Launcher

0.45 - 0.2 Closure
NativeBinder

FileVerb
Launcher

τ) also have design problems to a given extent. This suggests that if there is
sufficient time for an analysis, it might be worth lowering the value of τ to
get not only the class with the biggest problems, but also other classes with
smaller ones.

3.5. Changing the value of cmin. .
In this section we are going to investigate the effect of changing the value

of the minimum confidence (so far we have performed every test with the value
of 0.85). While changes in the value of τ influence which classes are reported
as having a bad design, but each class had the same number of errors (as
shown in the previous section), changes in the value of cmin influence which
rules are mined, and consequently the number of errors for each class. For
these experiments we will use the value of τ = 0.8.

First we wanted to analyze how the number and length of rules changes
when the value of cmin is increased or decreased. For values between 0.9 and
0.6 with decrements of 0.05 the number of rules is presented in Table 7. We
can see that as the minimum confidence decreases, the number of mined rules
increases drastically. The maximum length of the rules increases, too.

The results of using the relational association rules mined for the different
values of cmin for finding badly designed classes in the open source projects
are presented on Tables 8, 9, 10, 11. Looking at the tables, we can see that as
the number of rules increases, so does the number of reported classes.

In case of the FTP4J project (presented on Table 8), besides the well-
justified FTPClient class, four other classes are reported. Out of these, as

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 53

Table 7. The number and length of rules for different values of cmin.

Confidence 3 4 5 6 7 8 Total
0.9 21 0 0 0 0 0 21
0.85 21 4 16 1 0 0 42
0.8 7 3 132 110 0 0 252
0.75 4 7 113 208 60 0 392
0.7 0 4 132 303 207 30 676
0.65 20 16 111 308 443 146 1044
0.6 25 22 127 506 696 286 1662

Table 8. Identified classes for the FTP4J system for different
values of cmin.

cmin 1.5 - 1.5.1 1.6 - 1.6.1
0.9 - 0.8 FTPClient FTPClient
0.75 FTPClient FTPClient

SOCKS4Connector SOCKS4Connector
SOCKS5Connector SOCKS5Connector

0.7 FTPClient FTPClient
DirectConnector DirectConnector

SOCKS4Connector SOCKS4Connector
SOCKS5Connector SOCKS5Connector

0.65-0.6 FTPClient FTPClient
DirectConnector FTPFile

FTPFile SOCKS4Connector
SOCKS4Connector SOCKS5Connector
SOCKS5Connector

described in previous Sections, only the class FTPFile is reported correctly,
because it is a Data Class.

The results given for the ISO8583 project are really interesting. For the
other projects, a class which is reported for a higher value of cmin will be re-
ported for the lower values, too (there is one exception for the FTP4J project,
and one for Profiler4J), but here classes keep appearing and disappearing.
There are three classes which are reported: MessageFactory, ISOValue and
ISOType. We have already presented that MessageFactory is correctly identi-
fied, but ISOValue is not. ISOType is actually an enum, with many methods,
many of them overloaded, but there are no outstanding problems with it.

54 ZSUZSANNA MARIAN

Table 9. Identified classes for the ISO8583 system for differ-
ent values of cmin.

cmin 1.5.2 1.5.3 - 1.5.4
0.9 - 0.85 MessageFactory MessageFactory
0.8 - 0.75 ISOValue ISOValue

MessageFactory MessageFactory
0.7 ISOValue ISOValue

ISOType ISOType
0.65 ISOValue ISOValue

ISOType ISOType
MessageFactory MessageFactory

0.6 ISOValue ISOValue
MessageFactory ISOType

MessageFactory

Table 10. Identified classes for the Profiler4J system for dif-
ferent values of cmin.

cmin 1.0-alpha5 1.0-alpha6 1.0-alpha7
1.0-beta1

0.9 Server MemoryInfo* Config*
0.85 Server MemoryInfo Config
0.8 Config Config Config

Server MemoryInfo
MemoryInfo

0.75 Config Config Config
Server CFlow CFlow

MemoryInfo MemoryInfo
Response Response

0.7-0.6 Config Config Config
Server ThreadInfo ThreadInfo

ThreadInfo MemoryInfo CFlow
MemoryInfo Response
Response

The reason for the fact that some reported classes disappear when the
value of cmin decreases (and sometimes they appear again) is caused by the
fact, that for different values of cmin the percentage of binary rules in which
a metric appears can change a lot. For example, when cmin = 0.85, the LD

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 55

Table 11. Identified classes for the WinRun4J system for dif-
ferent values of cmin.

cmin 0.4.0 - 0.4.4
0.9 NativeBinder
0.85 NativeBinder*
0.8 NativeBinder

Launcher
0.75 - 0.6 NativeBinder

FileVerb
Launcher

metric appears in 29.26% of the binary rules, while for cmin = 0.6 this value
is only 17.56%. Because of these changes the order of classes based on their
number of errors changes too. For example, for version 1.5.2 , for cmin = 0.9,
MessageFactory has more errors than ISOValue and ISOType together. When
cmin = 0.8, ISOValue has more errors than MessageFactory, and ISOType has
the least (out of these three). When cmin = 0.65, MessageFactory is the one
with the least errors and ISOValue has the most. Finally, when cmin = 0.6,
ISOValue has again the most, but now ISOType has the least errors.

The results for the Profiler4J software system are presented on Table 10.
Here we also have some classes that were not reported during the previous
studies: Response and CFlow. Response is a simple Data Class, with two
fields and two getters, while CFlow is a class with only one short method and
an inner class (which is not included in our analysis).

For the WinRun4J project, the reported classes are almost the same as in
the previous Section, when the value of τ was changed. As already mentioned
there, FileVerb is a Data Class andd Launcher is not really cohesive.

Verifying the results for all software systems, we can observe that for the
lower values of cmin (between 0.7-0.6) three out of the four projects report
new Data Classes: FileVerb in case of WinRun4J, FTPFile in case of FTP4J
and Response in case of ISO8583. This suggests that further analysis might
be useful, to see, if it is possible to identify a value or an interval for cmin,
where it can identify Data Classes in the system.

4. Comparison to Related Work

There are many different approaches that try to identify design defects
in software systems, presented in the literature. Most of them use software
metrics and predefined thresholds for their values, like Marinescu’s detection
strategies [9], or Munro’s method, presented in [14]. In a series of papers,

56 ZSUZSANNA MARIAN

Moha et. al presents the idea of rule cards, which contains both metric values,
but also semantic and structural information [12], [11], [13]. Rule cards were
extended by Khomh et. al, in order to handle uncertainty [8]. They use
Bayesian Belief Networks and assign to each class a probability that it contains
a given design defect. In [7] three different search techniques (Harmony Search,
Particle Swarm Optimization and Simulated Annealing) are used for finding
rules that describe design defects, and can later be applied to classes. These
rules are made of software metrics and threshold values for them.

Just like the above presented methods, our approach uses software met-
rics, but it also uses Relational Association Rules, which, according to our
knowledge, have never been used for design defect detection yet. Another
important difference between them, is that our method uses the relation be-
tween the values of different metrics, while the above presented ones use fixed
thresholds, which can be hard to determine, because “good” and “bad” val-
ues for a metric usually depend on the size of the software system. On the
other hand, the above presented methods are capable of identifying different,
well-defined software smells, like Data Class or God Class, while our method
can only identify the class with the design problem.

5. Conclusions

In this paper we have presented a study on the effect of changes for different
parameters for the SDDRAR method, an approach for detecting design defects
in software systems, using software metrics and relational association rules.
We have considered five different possible changes, and reported and analysed
the results on open source software systems. We showed that it is better to
use normalized software metric values for mining relational association rules,
that it is better to use any-length association rules (not just binary) and that
using maximal rules is better. We have also shown that the parameter values
used in [3] for cmin and τ (0.85 and 0.8, respectively) are good values, but
interesting results could be achieved with different values, too.

The last study performed (when consequences of changes in the value of
cmin were tested) could be further analyzed. It would also be worth investi-
gating how the binary rules and their number change for different values of
cmin. We have already identified a possible pattern, that for lower values Data
classes are found, but this should be tested.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

ASSOCIATION RULE MINING BASED SOFTWARE DEFECT DETECTION 57

[2] ObjectWeb: Open Source Middleware, 2012. http://asm.objectweb.org/.
[3] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting software

design defects using relational association rule mining. Knowledge and Information Sys-
tems, 2012. Under review.

[4] Ftp4j, 2012. http://sourceforge.net/projects/ftp4j/.
[5] E. Gamma. JHotDraw Project, 2012. http://sourceforge.net/projects/jhotdraw.
[6] Iso8583, 2012. http://sourceforge.net/projects/j8583/.
[7] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel Wimmer.

Search-based design defects detection by example. In Proceedings of the 14th Interna-
tional Conference on Fundamental Approaches to Software Engineering, pages 401–415,
2011.

[8] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui. A
bayesian approach for the detection of code and design smells. In Proceedings of the
9th International Conference on Quality Software, pages 305–314, 2009.

[9] Radu Ma-rinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
Politechnica University Timisoara, Faculty of Automatics and Computer Science, 2002.

[10] Zsuzsanna Marian. Aggregated metrics guided software restructuring. In Proceedings of
the 8th IEEE International Conference on Intelligent Computer Communication and
Processing, pages 259–266, 2012.

[11] Naouel Moha. Detection and correction of design defects in object-oriented architec-
tures. In Doctoral Symposium, 20th edition of the European Conference on Object-
Oriented Programming, 2006.

[12] Naouel Moha, Yann-Gaël Guéhéneuc, and Pierre Leduc. Automatic generation of detec-
tion algorithms for design defects. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, pages 297–300, 2006.

[13] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur, Laurence Duchien, and
Alban Tiberghien. From a domain analysis to the specification and detection of code
and design smells. Formal Aspects of Computing, 22(3–4):345–361, 2010.

[14] Matthew James Munro. Product metrics for automatic identification of “bad smell”
design problems in java source code. In Proceedings of the 11th IEEE International
Software Metrics Symposium, 2005.

[15] Profiler4j, 2012. http://sourceforge.net/projects/profiler4j/.
[16] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface

for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

[17] Winrun4j, 2012. http://sourceforge.net/projects/winrun4j/.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: marianzsu@cs.ubbcluj.ro

