
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

CLUSTERING, TIERED INDEXES AND TERM PROXIMITY

WEIGHTING IN TEXT-BASED RETRIEVAL

IOAN BADARINZA AND ADRIAN STERCA

Abstract. In this paper we present a textual retrieval system based on
clustering and tiered indexes. Our system can be used for exact phrase
matching and also for improved keyword search by employing term prox-
imity weighting in the similarity measure. The document retrieval process
is constructed in an efficient way, so that not all the documents in the
database need to be compared against the searched query.

1. Introduction

Textual-based web search accounts for a large part of the traffic in the In-
ternet nowadays. The majority of the Internet traffic no longer flows through
core routers, but through edge distribution networks like the one of the Google
search engine. Although there are several forms of information retrieval (i.e.
textual information retrieval, sound-based information retrieval, video infor-
mation retrieval etc.) the one that evolved the most is text-based information
retrieval and this is reflected in the commercially web search engines available
today. In this paper we present an information retrieval systems which offers
besides keyword search functionality also exact phrase matching. Our system
uses a similarity measure which favors documents that contain large portions
of consecutive terms from the query, so it can be used in detecting plagiarism
in a scientific paper. If the candidate document does not contain groups of
consecutive terms from the query, the similarity measure defaults to a classi-
cal cosine similarity and the search is a keyword search (not an exact phrase
search). The index structure is based on clustering the saved documents and
regular term-frequency/inverse-document-frequency indexes.

Received by the editors: November 27, 2012.
2010 Mathematics Subject Classification. 68U35, 68M11.
1998 CR Categories and Descriptors. H.3.3 [Information Systems]: Information Stor-

age and Retrieval – Information Search and Retrieval ; H.3.1 [Information Systems]: In-
formation Storage and Retrieval – Content Analysis and Indexing .

Key words and phrases. textual information retrieval, tiered indexes, document clustering,
term proximity.

122



CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 123

The rest of the paper is structured as follows. In section 2, the general
structure of an IR system is outlined and work related to ours is mentioned.
Then, section 3 presents the first part of our IR system, the inverted index,
followed by section 4 which presents the second part, the retrieval algorithm of
our system. In section 5 we present the results of some preliminary evaluations
of our system and the paper ends with conclusions in section 6.

2. Information retrieval fundamentals and related work

Every information retrieval system is build from two main parts: the index
structure and the retrieval/ranking algorithm. There are several space models
for an IR system [1]: the boolean model, the probabilistic model [2], [3], vector
space model, linguistic model.

Most IR systems extract keywords from the documents after an initial
prefiltering phase (which includes stop words elimination, stemming and lem-
mantization) and build an inverted index. Most IR systems assign to each
keyword t from document d a weight like the following [4]:

tf idft,d = tft,d × idft

where tft,d is the number of occurrences of term t in document d (i.e. term
frequency) and idft is the inverse term frequency (i.e. number of occurrences
of term t in all indexed documents). There are several variants for the term
weight formula, but most of them use in some form the term frequency and
the inverse document frequency.

The ranked retrieval algorithm compares the query given by the user to
all or most documents in the collection and based on some similarity measure
between the query and a document it returns the top k relevant documents. A
very used similarity measure is the cosine similarity used in the vector space
model. For exact phrase matching, a positional index (i.e. an index holding
positions in a document for each term) must be used and the similarity measure
should include some form of term proximity scoring [5], [6], [7].

3. The index structure of the system

Our system represents documents in the vector space model where each
document is viewed as a vector with different document terms and for each
term, the system maintains a regular term-frequency/inverse-document-frequency
weight [1]. More specifically, for each term t, the index structure holds a post-
ings list with an entry for each document from the collection in which t occurs.
Each entry stores the document ID, the term weight in that document and a
list of positions were the term appears in that document. The term weight for



124 IOAN BADARINZA AND ADRIAN STERCA

term t in document d is:

wf idft,d = (1 + log(tft,d))× idft

All documents indexed by the system are grouped in clusters/groups based
on the similarity between their representative vectors and each group has a
leader which is chosen in a random way. When a query is submitted to the
IR system, it first checks with the groups’ leaders and then it continues the
search within the group with the leader most similar to our query. In this way
all other non similar documents are excluded from the search and only the
most relevant ones are considered which decreases the runtime execution of
the query. This cluster pruning heuristic is very useful when new documents
are added to the collection. In an IR system, this is done by a crawler. The
algorithm used for building the index structure of our system is described in
the following lines:

The crawler indexing algorithm:
Input: R = {url1, url2, ..., urln} // crawler’s repository

L = {l1, l2, ..., lm} // the existing leaders of the indexed clusters where
// li is the representation of a document in the
// vector space model

For all r ∈ R do
d ← getHtml(r);
d ← filter(d);
init v; // v is the representation of document d in vector space model
for all t ∈ d do //for each term t from document d

v[t] = wf idft,d;
end for;
init Sim;
for all l ∈ L do

Sim(l) ← Similarity(v,l); // computing similarity between
// document d and cluster leader l

end for;
l’ ← MAX(Sim);
insert d in CLUSTER(l’);

end for;

The cluster based crawler first takes from the repository an url and gets the
html source code of that page. The next step is text formatting, deleting the
html tags, stop words elimination (e.g. and, or etc.), deleting javascript and



CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 125

css code etc. The following step is index creation based on the term weight
wf idft,d for all the terms that appear in the document. In order to find the
most appropriate cluster to which this document should be added, the most
similar cluster leader from the collection is found and the new document is
added to the cluster of this leader. When measuring the similarity between
the vectors v and l, the representations of the document d and a cluster leader,
the classical cosine similarity metric is used:

Similarity(v, l) =
v ◦ l
∥v∥ · ∥l∥

where the numerator is the dot product of vectors v and l and ∥.∥ symbolizes
the Euclidean norm.

4. The retrieval algorithm of the system

Our information retrieval system uses a combination of clustering and
tiered indexes for document searches. When using tiered indexes we set a
similarity threshold at a higher value when we search for a document at the
first tier and decrease that value at tier two and so on until we find the
desired number of documents. This means that the user can search for a whole
document and the system will return the most similar indexed documents.

Because of our similarity metric, the retrieval algorithm of our system is a
combination between exact phrase retrieval and keyword based retrieval. This
means that although the search is essentially a keyword search based on cosine
similarity between vectors containing term weights, the vector representation
of the query and the vector representation of a candidate document, documents
that contain large groups of consecutive terms from the query are favored when
returning the results (thus, considered more relevant than documents that do
not contain groups of consecutive terms from the query).

The retrieval algorithm returns the top k documents most similar to our
query (off course, the query is represented in vector space, in order to be com-
pared to other documents) from the document collection. The algorithm is
the following:

The document retrieval algorithm:
Input: L = {l1, l2, ..., lm} // the leaders of indexed clusters where li is the

// vector representation in the vector space model
q // q is the vector representation of the query

Score ← [];
init minimum threshold;
init similarity threshold;



126 IOAN BADARINZA AND ADRIAN STERCA

index ← 0;
while (index ≤ k) or (similarity threshold > minimum threshold) do

L’ ← first three similar leaders(q, L, similarity threshold);
L ← L - L’;
for all l ∈ L′ do

for all d′ ∈ CLUSTER(l) do
if (similar(q,d’) ≥ similarity threshold)

Score[d’] ← similar(q, d’);
index ← index +1;

end if;
end for;

end for;
similarity threshold ← similarity threshold - 1;

end while;
for all d’ in Score[] do

Score[d’] ← Score[d’] + title metadata url score(d’);
end for;
Sort(Score);
return Score

The first step is the search of the most similar leaders from the clusters,
which add some speed to the algorithm because the document is compared
only to the leaders and not to all documents from the collection. After getting
the first three most similar clusters, the document is searched in these leaders’
clusters. The function that is used for similarity computation between the
vector representations of 2 documents, d1 and d2, is a modified cosine similarity
function that takes into account matching groups of consecutive words:

(1) similar(d1, d2) =
d1 ◦ d2
∥d1∥ · ∥d2∥

+

(
1− 1

Nd1,d2

)
where the denominator represents the dot product between vectors d1 and
d2, ∥.∥ represents the Euclidean norm of a vector and Nd1,d2 is the length (in
terms) of the largest group of consecutive terms that occurs both in d1 and
d2. Two documents that have a large group of consecutive terms occurring
in both will have a value close to 1 for the second part of the similar(d1, d2)
formula. If documents d1 and d2 have no terms in common or if they have
terms in common, but no groups of consecutive terms in common, Nd1,d2 is
set to 1 and the formula similar(d1, d2) defaults to a classical cosine similarity
metric. So the two documents, d1 and d2, are more similar when the value of
the similar() function is higher and less similar when its value is lower. Please
note that the formula (1) is not a metric in the mathematical sense since it



CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 127

does not satisfy the triangle inequality property, but it is a semimetric. The
values of the semimetric (1) will be between 0.0 and 2.0. The reason that the
semimetric contains the Nd1,d2 term is to implement a flexible form of exact
phrase matching.

After the first leaders most similar to the query were found, the next step
takes place which contains the actual extraction of the k-th most relevant
documents that have a similarity value at least as higher as the threshold.
The relevant documents that would be returned to the user are searched in
the clusters of the selected leaders. The extraction of the first k documents is
based on tiered indexes and the following heuristics were used:

• In the first tier, the document will be searched in the first 3 most
similar leaders’ clusters and the extracted documents must be at least
50% similar with the searched document;
• If the number of returned documents after the first tier is lower than
k, than the search goes to tier 2 where the similarity threshold is set
to 40%;
• If after tier 2 the number of returned documents is lower than k than
it goes to tier 3 where the similarity threshold is set to 20%;
• If the tier 3 search is done and there still aren’t k returned documents,
than the found documents are returned.

The last step in the algorithm is the rank and score computation for the
extracted documents. For score computation, the following factors are taken in
consideration: similarity percentage calculated with the formula (1), the words
from documents title, key words from meta tags and the words from the url
as follows: the score increases with 1 if words from the query are found in the
meta data, with 2 if words from the query are found in the document’s title and
with 2 if words from the query are found in the document’s url. Considering
the score computation, we can say that this algorithm has support for web
pages that were optimized for searched engines.

5. Evaluation

In order to evaluate our text retrieval system we performed initial tests
on a rather small document collection consisting of 100 documents, most of
them crawled and indexed from the wikipedia.org website. The tests showed
that our systems retrieves relevant documents to a large degree of the returned
results. We detail in the following lines the results of two tests. In the first
test we used a long query of about 70 terms and in the second query we used
a smaller query of about 20 terms. Let this query be referred to by Q in both
tests. In order to test the efficiency of our modified cosine similarity measure,
7 documents from our 100 documents collection were artificially created:



128 IOAN BADARINZA AND ADRIAN STERCA

• Document D1 contains just the query, Q
• Document D2 contains the query Q, repeated 3 times
• Document D3 contains query Q, then some random text, then another
occurrence of Q, then other random text
• Document D4 contains half of Q, followed by some random text, then
the other half of Q, followed by another random text
• Document D5 contains a large portion of random text followed by Q
and followed by another random text
• Document D6 containing some text which resembles Q, but is not the
text from Q
• Document D7 which contains the first third of Q followed by some
random text, then the second third of Q, then followed by another
random text, then the final third of Q and some random text

For both tests, we set the parameter k of the retrieval algorithm to 10.
When the longer query was given to the system, the system retrieved the fol-
lowing documents in the specified order and with the specified similarity score:

Document Similarity score
D1 1.99
D2 1.98
D3 1.63
D4 1.44
D5 1.39
D7 1.32

Da (irrelevant) 0.0304
Db (irrelevant) 0.0293
Dc (irrelevant) 0.0265
Dd (irrelevant) 0.0248
Precision = 6/10 = 0.6
Recall = 6/6 = 1.0

The retrieved documents for the short query of about 20 terms are:



CLUSTERING, TIERED INDEXES AND TERM PROXIMITY WEIGHTING 129

Document Similarity score
D1 1.89
D2 1.88
D3 1.53
D5 1.46
D4 1.35
D7 1.23

D6 (irrelevant) 0.26
Da (irrelevant) 0.035
Db (irrelevant) 0.028
Dc (irrelevant) 0.026
Precision = 6/10 = 0.6
Recall = 6/6 = 1.0

We can see from both tables that the relevant documents were returned,
the documents containing large portion of Q have higher similarity score and
there is a significant distance between the similarity score for relevant docu-
ments and the similarity score for irrelevant documents.

6. Conclusions and future work

In this paper we have presented an information retrieval system based
on clusters and tiered indexes that combines exact phrase search with (non-
phrase) keyword based search. The system should scale well with a large
document collection because it uses clustering in the retrieval process. Initial
tests on a rather small sized document collection show that the precision and
recall measures of our system have reasonable good values. Of course, in order
to assess the full efficiency of such a retrieval system, we need to test it on large
collections of documents like the Ad hoc track from the TREC collections [8].

7. Acknowledgments

This work was partially supported by the CNCSIS-UEFISCSU unit of the
Romanian Government, through project PN II-RU 444/2010.

References

[1] Manning C.D., Raghavan P., Schutze H, An introduction to Information Retrieval, Cam-
bridge University Press, 2009.

[2] Crestani F., Lalmas M., Van Rijsbergen C. J., Campbell I., Is this document relevant? ...
probably: A survey of probabilistic models in information retrieval, in ACM Computing
Surveys, vol 30, no.4, pp.528552, 1998.

[3] Fuhr N., Probabilistic models in information retrieval, in The Computer Journal, vol. 35,
no.3, pp. 243255, 1992.



130 IOAN BADARINZA AND ADRIAN STERCA

[4] Papineni K., Why inverse document frequency?, In Proc. North American Chapter of the
Association for Computational Linguistics, pp. 18, 2001.

[5] Sadakane K., Imai H., Text retrieval by using k-word proximity search, in International
Symposium on Database Applications in Non-Traditional Environments, pp.183-188,
1999.

[6] Buttcher S., Clarke C. L. A., Lushman B., Term proximity scoring for ad-hoc retrieval on
very large text collections, in Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in IR, pp. 621622, 2006.

[7] Rasolofo Y., Savoy J., Term proximity scoring for keyword-based retrieval systems, in
Proceedings of the 25th European Conference on IR Research, pp. 207218, 2003.

[8] The Text Retrieval Conference, http://trec.nist.gov .

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: ionutb@cs.ubbcluj.ro, forest@cs.ubbcluj.ro


