
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

ASPECT MINING. PAST, PRESENT, FUTURE

GRIGORETA S. COJOCAR

Abstract. Aspect mining is a research domain that tries to identify cross-
cutting concerns in already developed software systems. The goal is to
refactor the analyzed system to use aspect oriented programming in order
to ease the maintainability and evolution of the system. In this paper we
briefly describe the aspect mining techniques proposed so far, we analyze
them using three new criteria, and we discuss some possible future research
directions considering the current state of the art.

1. Introduction

Ever increasing software systems made designing and implementing them
a complex task. Software systems are composed of many different concerns,
where a concern is a specific requirement or consideration that must be ad-
dressed in order to satisfy the overall system. The concerns are divided in core
concerns and crosscutting concerns. The core concerns capture the central
functionality of a module, while crosscutting concerns capture system-level,
peripheral requirements that cross multiple modules. The current paradigms
like procedural or object oriented programming provide good solutions for the
design and implementation of core concerns, but they cannot deal properly
with crosscutting concerns. Different approaches have been proposed for the
design and implementation of crosscutting concerns: subject oriented pro-
gramming [38], composition filters [1], adaptive programming [23], generative
programming [10], aspect oriented programming (AOP) [19]. From these ap-
proaches, the aspect oriented programming approach has known the greatest
success both in industry and academia.

In order to design and implement a crosscutting concern, AOP introduces
four new concepts: join point (i.e., a well-defined point in the execution of a
program), pointcut (i.e., groups a set of join points and exposes some of the
values in the execution context of those join points), advice (i.e., a piece of

Received by the editors: November 24, 2012.
2010 Mathematics Subject Classification. 68N19, 68N99.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement – Restructuring, reverse engineering, and reengineering .
Key words and phrases. aspect mining, analysis, crosscutting concerns.

85



86 GRIGORETA S. COJOCAR

code that is executed at each join point in a pointcut), and a new modular-
ization unit called aspect. The aspect is woven to generate the final system,
using a special tool called weaver. Some of the benefits that the use of AOP
brings to software engineering are: better modularization, higher productiv-
ity, software systems that are easier to maintain and to evolve. Nowadays,
there are many programming language extensions to support AOP: AspectJ
for Java [3], AspectC++ for C++ [2], etc.

For more than a decade researchers have tried to develop techniques and
tools to (automatically) identify crosscutting concerns in already developed
software systems, without using AOP. This area of research is called Aspect
Mining. The goal is to identify the crosscutting concerns, and then to refactor
them to aspects, in order to obtain a system that can be easily understood,
maintained and modified.

In order to identify crosscutting concerns, the techniques try to discover
one or both symptoms that appear when designing and implementing crosscut-
ting concerns using the existing paradigms: code scattering and code tangling.
Code scattering means that the code that implements a crosscutting concern
is spread across the system, and code tangling means that the code that im-
plements some concern is mixed with code from other (crosscutting) concerns.

Until now, many different approaches have been used for aspect mining,
and different techniques have been proposed. In this paper we try to analyze
the state of the art of aspect mining from the perspective of the proposed goal
and to identify other possible future research directions in this field. The main
contributions of this paper are to analyze the existing aspect mining techniques
using three new criteria: industry usage, IDE integration and integration with
AO refactoring, and to discuss possible new research directions in this field.

The paper is structured as follows. Section 2 presents an overview of
the aspect mining techniques proposed so far. Section 3 analyzes the aspect
mining techniques using three new different criteria. In Section 4 we discuss
some possible future research directions considering the current state of the
art of this field.

2. Overview of Aspect Mining Techniques

The first approaches in aspect mining were query-based search techniques.
The developer had to introduce a so-called seed (eg., a word, the name of
a method or of a field) and the associated tool showed all the places where
the seed was found. Very soon, researchers discovered that this approach to
aspect mining has some important disadvantages: the tool user had to have
an in-depth knowledge of the analyzed system, as he/she had to figure out
the seed(s) to be introduced, and the large amount of time needed in order to



ASPECT MINING. PAST, PRESENT, FUTURE 87

filter the results displayed. There are many query based aspect mining tools
proposed: Aspect Browser [12], The Aspect Mining Tool(AMT) [13], Multi-
Visualizer(AMTEX) [44], Feature Exploration and Analysis Tool(FEAT) [33],
QJBrowser [31], JQuery [17], Prism [45] and Theme/Doc [4]. Except for the
last one, all the other techniques are performing the search in the source code
of the mined system. The Theme/Doc tool is searching for the seed in the
requirements specifications.

Starting with 2004 researchers have focused on developing aspect mining
techniques that do not require an initial seed from the user. These tech-
niques try to identify the crosscutting concerns starting just from some kind
of system representation (the source code, the requirements documentation,
some execution traces, etc.), and are called automated aspect mining tech-
niques. Different approaches were used: metrics, clustering, clone detection
techniques, association rules, formal concept analysis, natural language pro-
cessing, etc. In the following we briefly describe the automated aspect mining
techniques proposed so far.

Marin et al. [26] have proposed an aspect mining technique that looks for
methods that are called from many different call sites and whose functionality
is needed across different methods, classes, and packages. The authors aim at
finding such methods by computing the fan-in metric for each method using
the static call graph of the system. Their approach relies on the observation
that scattered, crosscutting functionality that largely affects the code modu-
larity is likely to generate high fan-in values for key methods implementing
this functionality.

Tonella and Ceccato [40] have proposed to use dynamic code analysis, fea-
ture location and formal concept analysis [11] for aspect mining, as follows.
Execution traces are obtained by running an instrumented version of the pro-
gram under analysis for a set of scenarios (use cases). The relationship between
execution traces and executed computational units (methods) is subjected to
concept analysis. The execution traces associated with the use-cases are the
objects of the concept analysis context, while the executed methods are the
attributes. In the resulting concept lattice, the concepts that satisfy both the
scattering and the tangling conditions are considered as aspect candidates.

Breu and Krinke have proposed an aspect mining technique based on exe-
cution relations [6]. The proposed approach has two versions: a dynamic one
[6] and a static one [20, 21]. They introduce the notion of execution relation,
that describes the kind of relation that may exist between the executions of two
methods. In the dynamic version the execution relations are extracted from
program traces, and in the static version the execution relations are extracted
from the control flow graph. They identify recurring execution patterns which
describe certain behavioral aspects of the software system, and expect these



88 GRIGORETA S. COJOCAR

patterns to be potential crosscutting concerns which describe recurring func-
tionality in the program and thus are possible aspects. The authors have
focused only on method executions as they wanted to analyze object-oriented
systems where logically related functionality is encapsulated in methods.

Sampaio et al. [34] have proposed an approach for mining aspects from
requirements related documents. Their approach builds upon the ideas of
Theme/ Doc approach [4], but uses corpus-based natural language process-
ing techniques in order to effectively enable the identification of aspects in
semi-automated way. The main goal of their approach is to determine poten-
tial aspect candidates in requirements documents regardless of how they are
structured (e.g., informal descriptions, interviews, structured documents).

Kim and Tourwé have proposed an aspect mining technique that relies on
the assumption that naming conventions are the primary means for program-
mers to associate related but distant program entities [41]. Their technique
tries to identify potential aspects and crosscutting concerns by grouping pro-
gram entities with similar names. They apply formal concept analysis where
the objects are all the classes and methods in the analyzed program and the
attributes are the identifiers associated with those classes and methods. The
authors chose for inspection only the groups that contain at least a given num-
ber of objects (a given threshold) and that are crosscutting (i.e., the involved
methods and classes belong to at least two different class hierarchies).

Breu and Zimmermann tried to solve the problem of aspect mining taking a
historical perspective [7]: they mine the history of a project (version archives)
and identify code changes that are likely to be crosscutting concerns. Their
analysis is based on the hypothesis that crosscutting concerns evolve within a
project over time. A code change is likely to introduce such a concern if the
modification gets introduced at various locations within a single code change.

Some authors tried to use clone detection techniques that aim at finding
duplicated code, which may have been slightly adapted from the original. They
base their research on the observation that typically source code implementing
a crosscutting concern involves a great deal of duplications. Since the code
belonging to a crosscutting concern cannot be cleanly captured inside a single
abstraction, using the current programming paradigms, it cannot be reused.
Therefore, developers are forced to write the same code over and over again,
and are tempted to just copy paste the code and adapt it slightly to the
context.

Shepherd et al [36] proposed the first automatic aspect mining technique
based on clone detection. They based their analysis on AspectJ, particularly
on the before advice. The technique consists in identifying initial refactoring
candidates for the before advice using a control-based comparison, followed
by filtering based on data dependence information. They used two types of



ASPECT MINING. PAST, PRESENT, FUTURE 89

clone detection techniques for identifying crosscutting concerns: PDG-based
and AST-based clone detection techniques.

Bruntink et al. [9] tried to evaluate the usefulness and accuracy of clone
detection techniques in aspect mining. The existing clone detectors usually
produce output consisting of pairs of clones, i.e., they report which pairs of
code fragments are similar enough to be called clones. The authors then
investigate the groups of code fragments that are all clones of each other,
called clone classes, in order to find aspect candidates.

Bruntink has extented the approach described in [9] considering metrics
that grade the obtained clone classes [8]. The considered metrics were defined
with the purpose of improving maintainability when aspects are used.

Orlando Mendez has also studied the applicability of clone detection tech-
niques to aspect mining [30]. However, he used only one clone detector and
applied it for one case-study.

Many authors have tried to use clustering for crosccutting concerns identi-
fication. Clustering is a division of data into groups of similar objects [5, 16].
Each group, called cluster, consists of objects that are similar between them-
selves and dissimilar to objects of other groups.

Shepherd and Pollock [37] used clustering to find methods with similar
name as an indication of crosscuttingness. They perform agglomerative hier-
archical clustering in order to group methods. The objects to be clustered are
the names of the methods from the software system under analysis. The au-
thors have developed a tool that helps users navigate and analyze the obtained
clusters. The rest of the approach is just manual analysis of the obtained re-
sults using the tool.

Moldovan and Şerban have proposed a clustering based aspect mining ap-
proach that tries to discover crosscutting concerns by finding attributes of the
code scattering symptom [28]. The authors use the vector space model based
approach with two different vector space models, and different clustering algo-
rithms (hard k-means clustering, fuzzy clustering, hierarchical agglomerative
clustering, genetic clustering, etc) in order to group the methods from the
software system into clusters.

Şerban and Moldovan also proposed an approach based on graph [35]. This
approach is similar to the clustering one, but they use graphs, and in order to
obtain a partition of the software system under analysis.

He and Bai [14] have proposed an aspect mining technique based on dy-
namic analysis and clustering that also uses association rules. They first use
clustering to obtain crosscutting concern candidates and then use association
rules to determine the position of the source code belonging to a crosscutting
concern in order to ease refactoring. Execution traces are generated for an
instrumented version of the software system, and for specified scenarios and



90 GRIGORETA S. COJOCAR

inputs. Every scenario has a called-method sequence. If there exists a group
of codes that has similar action, i.e., similar called-method sequence, and it
frequently appears in execution traces, then a crosscutting concern may exist.
Similar called-method sequences are considered possible crosscutting concerns
code. Clustering analysis is used to find similar called-method sequences. The
scenarios are the objects to be clustered, and the methods from the software
systems are the attributes.

Maisikeli has proposed a dynamic aspect mining technique that uses a
neural network clustering method called Self Organizing Map (SOM) [24].
He used a set of legacy benchmark programs to determine the most relevant
software metrics that can be used for aspect mining (i.e., dynamic fan-in/fan-
out, information flow, method spread, method cohesion contribution, etc.).
The mined software system is executed to compute the value of these metrics.
Based on these metrics he constructs a vector space model that is submitted as
input to SOM for clustering. The results obtained by SOM are then manually
analyzed to identify crosscutting concerns.

Rand Mcfadden has expanded the approach of Moldovan and Serban by
using model based clustering [32]. She investigated the performance of differ-
ent model based clustering algorithms with six vector space models (the two
defined by Moldovan and Serban, and four new ones).

Vidal et al. have proposed another aspect mining technique based on
dynamic analysis and association rule mining [42]. They execute the system
using a set of scenarios in order to obtain execution traces. These execution
traces are given as input to an association rule algorithm to find interesting
associations among methods. The rules obtained are classified and filtered out
in order to remove redundant rules or rules with utility methods.

Huang et al. have proposed an aspect mining technique inspired by the
link analysis of information retrieval technology [15]. They try to discover
the crosscutting concerns in the concern graphs extracted from the program
using a two-state model. They compute the program elements that are in the
scatter and centralization states, and use a ranking technique to select the
crosscutting concerns candidates.

3. Analysis of Aspect Mining Techniques

Many different aspect mining techniques have been proposed so far, some
of them in the last two years. However, if the techniques proposed in the
beginning used very different apprroaches, the last ones (proposed in the last
two-three years) are more an improvement of some of the previously proposed
techniques. Even so, the results obtained by the new aspect mining techniques



ASPECT MINING. PAST, PRESENT, FUTURE 91

did not improve significantly. They obtained better results, but not much
better.

In 2008, Mens et al. [27] have conducted an analysis of the problems the
proposed aspect mining techniques were encountering. They have identified
as main problems: poor precision, poor recall, subjectivity, scalability, lack of
empirical validation. They have also identified the causes of these problems. In
their opinion there are three main root causes: inappropriateness of the tech-
niques used to mine for aspects, lack of a precise definition of what constitutes
an aspect, and inadequate representation of the aspect mining results.

Even though the study conducted by Mens et al. describes most of the
problems that exist in the aspect mining research field, there are other criteria
that must also be considered when analyzing the aspect mining techniques, like
the usage of aspect mining techniques in industry, integration of techniques
with IDEs, and link of these techniques with aspect oriented refactoring tools.
In the following we analyze the aspect mining techniques using these criteria.

3.1. Aspect mining techniques used in industry. Have any of the as-
pect mining techniques been used for complex projects? In Section 2 were
briefly described the aspect mining techniques proposed so far. Most of the
techniques used as case-studies JHotDraw version v5.4b1 [18] and Carla Laffra
implementation of Dijkstra algorithm [22]. However, these case studies can-
not be considered as complex. The former is a small to medium size software
system, but the later case study is a small one consisting of only 6 classes.
There are just a few case studies used (i.e., Tomcat, Eclipse v3.2M3) that can
be considered as more complex. There are also no other reports or surveys
describing the use of any of the aspect mining techniques for more complex
software systems.

3.2. IDE Integration. Even though there are so many aspect mining tech-
niques proposed, most of them cannot be used as there is no associated tool
available. The only technique that can be used by others is the Fanin tech-
nique that has an Eclipse plugin available. The technique proposed by Vidal
et al. [42] also described the use of an Eclipse-based tool, called AspectRT,
however it is not publicly available. There are also a few techniques which can
be recreated by following and using the same tools as the proponents of the
techniques. However, for most of them, there is no tool available which makes
it difficult for others to use them for other case studies or software systems.

3.3. Integration with AO Refactoring. There are a few reports available
[39, 43] about using the results obtained by different aspect mining techniques
in order to refactor the mined system to use aspect oriented constructs. For
both reports the conclusion was that not all the crosscutting concerns that



92 GRIGORETA S. COJOCAR

exist in a software system can be easily redesigned and implemented using
AOP. For some crosscutting concerns, even the aspect oriented paradigm is
not a good solution.

Some refactorings were proposed in order to ease the migration to an
aspect oriented system [29]. However, except for the Vidal et al. technique,
none of the techniques take into the consideration the subsequent refactoring
step. This may be due to the facts that all the techniques still require a
large amount of user involvement in order to analyze the results obtained by
them, and that there are still a large number of false positives in the results
presented. Some of the authors have considered refactoring the case studies
used for aspect mining [25], however the approach used is mainly manually,
without tool support.

4. Future of Aspect Mining

Considering the problems discovered by Mens et al. [27], and the addi-
tional criteria discussed in Section 3, it is very unlikely that any of the existing
aspect mining techniques will be adopted by the industry in the near future.
Without a major change in the approach used for aspect mining, the industry
practitioners will not consider using an aspect mining technique. In the follow-
ing we discuss some possible research directions, that might ease the adoption
from industry.

4.1. Top-down approaches. In the beginning, the researchers have consid-
ered using a top-down approach for aspect mining. Using a catalog of known
crosscutting concerns, these kind of approaches should focus on identifying
the crosscutting concerns from the catalog. This may reduce execution time,
the large number of false positives, and the user involvement in analyzing the
obtained results.

4.2. Identify only refactorable crosscutting concerns. The case studies
used for aspect mining and AO refactoring have already shown that only a
susbset of the crosscutting concerns (CCCs) that exist in an object-oriented
software system may be refactored into aspects. Future aspect mining tech-
niques should focus on identifying only the refactorable crosscutting concerns.
This may ease the integration of the next step: refactoring to use AOP. In this
case, the techniques should also considered the right level of granularity for
refactorable CCCs. The existing aspect mining techniques consider different
levels of granularity: statement for clone-detection based techniques, methods
for almost all techniques. However, there is still the question of which level
is better: statement or method? If we consider only the refactorable CCCs,



ASPECT MINING. PAST, PRESENT, FUTURE 93

we should already know how they will be refactored, and it might help in
identifying the granularity level used for mining CCCs.

4.3. Create a catalogue of refactorable CCCs. In order to identify the
refactorable CCCs, we first need to know the crosscutting concerns that are
refactorable into aspects. For that we need to create a catalogue. We may
start by putting the most known crosscutting concerns that can be designed
and implemented using AOP, like security, transaction management, logging
and add new CCC as they appear in practice.

4.4. Tool support. It is very important that future aspect mining techniques
consider developing an associated tool, that can be integrated with existing
IDEs. Without such tools, the industry might not adopt/use the technique,
even thought it may obtain good results.

5. Conclusions

In this paper we have have briefly described the existing aspect mining
techniques, and, then, we have analyzed them using criteria like industry
adoption, IDE integration, and subsequent refactoring. We have also discussed
some future directions that should be considered for aspect mining.

Many different aspect mining techniques have been proposed so far, how-
ever case studies have shown that they do not perform very good: they have
low precision, a large number of false positive, they still require a large amount
of user involvement, and they cannot be integrated with refactoring tools.

Trying to discover all crosscutting concerns that exist in software systems is
not suited for aspect mining and aspect oriented refactoring. Other approaches
should be considered for aspect mining in order to be able to get near to one of
the objective of aspect mining, that of refactoring the identified crosscutting
concerns into aspects. Considering a top down approach, in the future, may
be more efficient as it may reduce the number of results presented to the
user, it may increase precision, it may decrease the time needed to identify
the crosscutting concerns, and it may also make possible integration with
refactoring tools.

References

[1] Mehmet Aksit. On the Design of the Object Oriented Language Sina. PhD thesis, De-
partment of Computer Science, University of Twente, The Netherlands, 1989.

[2] AspectC++ Homepage. http://www.aspectc.org/.
[3] AspectJ Project. http://eclipse.org/aspectj/.
[4] Elisa Baniassad and Siobhán Clarke. Finding Aspects in Requirements with

Theme/Doc. In Proceedings of Early Aspects 2004: Aspect-Oriented Requirements En-
gineering and Architecture Design, Lancaster, UK, March 2004.



94 GRIGORETA S. COJOCAR

[5] Pavel Berkhin. Survey of Clustering Data Mining Techniques. Technical report, Accrue
Software, San Jose, CA, 2002.

[6] Silvia Breu and Jens Krinke. Aspect Mining Using Event Traces. In Proceedings of
International Conference on Automated Software Engineering (ASE), pages 310–315,
2004.

[7] Silvia Breu and Thomas Zimmermann. Mining Aspects from Version History. In Sebas-
tian Uchitel and Steve Easterbrook, editors, 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006). ACM Press, September 2006.

[8] Magiel Bruntink. Aspect Mining Using Clone Class Metrics. In Proceedings of the 2004
Workshop on Aspect Reverse Engineering (co-located with WCRE 2004), November
2004. Published as CWI technical report SEN-E0502, February 2005.

[9] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé. On the
use of clone detection for identifying crosscutting concern code. IEEE Transactions on
Software Engineering, 31(10):804–818, 2005.

[10] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[11] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Springer-Verlag, Berlin,
Heidelberg, New York, 1996.

[12] William G. Griswold, Yoshikiyo Kato, and Jimmy J. Yuan. AspectBrowser: Tool Sup-
port for Managing Dispersed Aspects. Technical Report CS1999-0640, UCSD, March
2000.

[13] Jan Hannemann and Gregor Kiczales. Overcoming the Prevalent Decomposition of
Legacy Code. In Advanced Separation of Concerns Workshop,at the International Con-
ference on Software Engineering (ICSE), May 2001.

[14] Lili He and Hongtao Bai. Aspect Mining using Clustering and Association Rule Method.
International Journal of Computer Science and Network Security, 6(2):247–251, Febru-
ary 2006.

[15] Jin Huang, Yansheng Lu, and Jing Yang. Aspect mining using link analysis. In Proceed-
ings of the 2010 Fifth International Conference on Frontier of Computer Science and
Technology, pages 312–317. IEEE Computer Society, 2010.

[16] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, New Jersey, 1998.

[17] Doug Janzen and Kris De Volder. Navigating and Querying Code Without Getting Lost.
In Proceedings of Aspect-Oriented Software Development, pages 178–187, Boston, USA,
2003. ACM Press.

[18] JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[19] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings
European Conference on Object-Oriented Programming, volume LNCS 1241, pages 220–
242. Springer-Verlag, 1997.

[20] Jens Krinke. Mining control flow graphs for crosscutting concerns. In 13th Working Con-
ference on Reverse Engineering: IEEE International Astrenet Aspect Analysis (AAA)
Workshop, pages 334–342, 2006.

[21] Jens Krinke and Silvia Breu. Control-Flow-Graph-Based Aspect Mining. In Workshop
on Aspect Reverse Engineering (WARE), 2004.

[22] Carla Laffra. Dijkstra’s Shortest Path Algorithm.
http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/
DijkstraApplet.html.



ASPECT MINING. PAST, PRESENT, FUTURE 95

[23] Karl J. Lieberherr. Component Enhancement: An Adaptive Reusability Mechanism for
Groups of Collaborating Classes. In J. van Leeuwen, editor, Information Processing ’92,
12th World Computer Congress, pages 179–185, Madrid, Spain, 1992. Elsevier.

[24] Sayyed Garba Maisikeli. Aspect mining using self-organizing maps with method level
dynamic software metrics as input vectors. PhD thesis, 2009.

[25] M. Marin. Refactoring JHotDraws Undo concern to Aspectj. In Proceedings of the First
Workshop on Aspect Reverse Engineering (WARE), 2004.

[26] Marius Marin, Arie van, Deursen, and Leon Moonen. Identifying Aspects Using Fan-
in Analysis. In Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE2004)., pages 132–141. IEEE Computer Society, 2004.

[27] Kim Mens, Andy Kellens, and Jens Krinke. Pitfalls in Aspect Mining. In Proceedings of
the 2008 15th Working Conference on Reverse Engineering, WCRE ’08, pages 113–122,
Washington, DC, USA, 2008. IEEE Computer Society.

[28] Grigoreta Sofia Moldovan and Gabriela Serban. Aspect Mining using a Vector-Space
Model Based Clustering Approach. In Proceedings of Linking Aspect Technology and
Evolution (LATE) Workshop, pages 36–40, Bonn, Germany, March, 20 2006. AOSD’06.

[29] M. P. Monteiro and J. M. Fernandes. Towards a catalog of aspect-oriented refactorings.
In Proceedings of the 4th international conference on Aspect-oriented software develop-
ment, pages 111–122, 2005.

[30] Orlando Alejo Mendez Morales. Aspect Mining Using Clone Detection. Master’s thesis,
Delft University of Technology, The Netherlands, August 2004.

[31] Rajeswari Rajagopolan and Kris De Volder. A Query Based Browser Model. Master’s
thesis, University of British Columbia, Canada, July 2002.

[32] Renata Rand Mcfadden. Aspect mining using model-based clustering. PhD thesis, 2011.
AAI3445077.

[33] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies. In ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, pages 406–416, 2002.

[34] Américo Sampaio, Neil Loughran, Awais Rashid, and Paul Rayson. Mining Aspects in
Requirements. In Early Aspects 2005: Aspect-Oriented Requirements Engineering and
Architecture Design Workshop (held with AOSD 2005), Chicago, Illinois, USA, 2005.

[35] Gabriela Serban and Grigoreta Sofia Moldovan. A Graph Algorithm for Identification
of Crosscutting Concerns. Studia Universitatis Babes-Bolyai, Informatica, LI(2):53–60,
2006.

[36] David Shepherd, Emily Gibson, and Lori Pollock. Design and Evaluation of an Auto-
mated Aspect Mining Tool. In 2004 International Conference on Software Engineering
and Practice, pages 601–607. IEEE, June 2004.

[37] David Shepherd and Lori Pollock. Interfaces, Aspects, and Views. In Proceedings of
Linking Aspect Technology and Evolution Workshop(LATE 2005), March 2005.

[38] Subject oriented programming. http://www.research.ibm.com/sop/.
[39] Maximilian Störzer, Uli Eibauer, and Stefan Schöffmann. Aspect mining for aspect

refactoring: An experience report. In Towards Evaluation of Aspect Mining, Nantes,
France, July 2006. at ECOOP 2006.

[40] Paolo Tonella and Mariano Ceccato. Aspect Mining through the Formal Concept Anal-
ysis of Execution Traces. In Proceedings of the IEEE Eleventh Working Conference on
Reverse Engineering (WCRE 2004), pages 112–121, November 2004.

[41] Tom Tourwé and Kim Mens. Mining Aspectual Views using Formal Concept Analysis.
In SCAM ’04: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE



96 GRIGORETA S. COJOCAR

International Workshop on (SCAM’04), pages 97–106, Washington, DC, USA, 2004.
IEEE Computer Society.

[42] Santiago Vidal, Esteban S. Abait, Claudia Marcos, Sandra Casas, and J. Andrés
Dı́az Pace. Aspect mining meets rule-based refactoring. In Proceedings of the 1st Work-
shop on Linking Aspect Technology and Evolution, PLATE ’09, pages 23–27, New York,
NY, USA, 2009. ACM.

[43] Isaac Yuen and Martin P. Robillard. Bridging the gap between aspect mining and refac-
toring. In Proceedings of the 3rd workshop on Linking aspect technology and evolution,
LATE ’07, New York, NY, USA, 2007. ACM.

[44] Charles Zhang, Gilbert Gao, and Arno Jacobsen. Multi Visualizer.
http://www.eecg.utoronto.ca/ czhang/amtex/.

[45] Charles Zhang and Hans-Arno Jacobsen. PRISM is Research In aSpect Mining. In
OOPSLA, Vancouver, British Columbia, Canada, 2004. ACM Press.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: grigo@cs.ubbcluj.ro


