
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE

QUERIES

LEON ŢÂMBULEA, ADRIAN SERGIU DĂRĂBANT,
AND ANDREEA NAVROSCHI-SZASZ

Abstract. Lately, new applications arise that manage large collections
of location and points of interest objects. These are frequently accessed
nowadays in mobile and web applications. In order to be able to query
and update the position of these objects, several index structures are used.
Each of these structures has its own advantages in solving a certain con-
crete problem. The term POI (Point of Interest) is employed in the context
of use of mobile devices. A characteristic of POI collections of objects is
their relatively static character (these objects do not usually change their
location). In the index structures recommended for these collections a POI
object is stored a single time. In this paper we suggest the alteration of an
existing index structure by memorizing several times the addresses of some
POI objects. The purpose of this multiple storage consists in reducing the
response time for range queries.

Key-Words: Grid, R-tree, query POI objects, index redundancy

1. Introduction

A POI (Point of Interest) is a position or a complex 3D structure with some
information associated with it (ID, civil address, category, name, description,
etc.) [8].

The term of position (location) refers to a physical point on the Earth
surface (specified within a system of coordinates). Some categories of POI
objects are static (shopping center, speed camera, petrol station), but there
are also POI objects valid only for a certain period of time (for example, a
cultural event scheduled for a certain time interval).

Lately there are many applications that use spatial data queries, particu-
larly POI objects collections. These applications start from a specified position

Received by the editors: November 28, 2012.
2000 Mathematics Subject Classification. 03G10.
1998 CR Categories and Descriptors. H.2.2 [Database Management]: Physical De-

sign – Access methods; H.2.8 [Database Management]: Database applications – Spatial
databases and GIS ; H.2.4 [Database Management]: Systems – query processing .

75

76 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

or a position determined by a GPS device and they look for POI objects lo-
cated near this position, with possible additional restrictions, returning the
position and the associated information for the determined objects. For such
applications it is necessary that the responses to these queries are obtained
as quickly as possible. Large processing power and storage are generally not
enough in order to achieve acceptable response times and high accuracy on
this problem. One also needs specific types of indexes adapted to POI data
and POI query processing. Among the index structures mostly used for this
kind of queries we mention R-tree and the various versions of R-tree [2, 5, 9],
the grid structures [1, 6, 7], etc. In each of these structures, a reference to an
element from the POI objects collection is memorized a single time (there is
no redundancy in the index).

In this paper we analyze the possibility of memorizing several times certain
information (addresses of POI objects) in order to reduce the response time
for these queries.

The rest of this paper is organized in the following way: section 2 shortly
presents the R-tree and grid structures and the way to determine the re-
sponses to the queries, section 3 describes the suggested changes for the index
associated to a grid, in section 4 we emphasize the results obtained for some
experiments, and in section 5 we formulate some conclusions.

2. R-tree and Grid Structures

The POI objects collection is stored into a data base. Each object has an
idPOI, a position(x,y), and other associated information.

A range query reference is specified by two opposite points in a rectangle
D. With this type of query we ask for all POI objects located inside the
rectangle D.

To avoid the sequential access to all the objects of the data base, we build
an index. For each POI object in the index we memorize at least (idPOI and
(x, y)).

2.1. R-tree. The R-tree structure [2] was widely studied and used. An R-tree
is a balanced tree with two types of nodes:

• end nodes, where we store a sequence of values (idPOI, (x, y));
• internal nodes, where we store a sequence of values (idchild,MBR).
idchild is a pointer to an internal or end node, and MBR (minimum
bounding rectangle) is the smallest rectangle that includes all the ob-
jects that arise in the sub-trees of this node. There is no criterion for
the order of elements from an internal or end node.

As parameters of the index we have [4]:

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 77

• the dimension of a node of the R-tree, from which we can deter-
mine the maximum number of inputs to the node: the number of
(idchild,MBR) pairs from an internal node, or the number of
(idPOI, (x, y)) values from an end node. Let M be the maximum
number of entries that will fit in one node.

• the minimum number of entries in one node (which is not the root
node) is given by a second parameter m ≤ M/2. This parameter
dictates the minimum occupation of a node.

An internal node is analyzed (the nodes referred by this one are covered)
if the associated MBR intersects the rectangle D. For a terminal node all
the (idPOI, (x, y)) values are examined and the objects for which (x, y) ∈ D
are included in the query answer. Depending on the query, it’s possible that
several branches of the tree need to be covered.

2.2. Grid. The domain where the POI objects are located is divided into a
regular network of square cells (resulting into a matrix of cells) (see Figure 1).
The objects located inside such a cell are attached to this one and are stored
into a list. For a more efficient browsing of the list, the objects can be stored
into a linked list of blocks (a block may contain a specified maximum number
of (idPOI, (x, y)) elements).

Figure 1. Grid index structure

The parameters of this index are [10]:

• The dimension used for dividing the domain of POI objects (the side
of a square cell from the grid);

• The dimension of a block.

78 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

To determine the answer to a range query the following two steps need to
be taken:

(a) We determine the cells that are completely included inside the rectangle
D (all the elements from these cells are included in the answer);

(b) We determine the cells that are partially covered by the rectangle D. For
the objects of these cells we perform the test (x, y) ∈ D.

The POI objects are not uniformly spread in the plane, therefore some
cells will have many blocs (of objects) associated, and the search from step b)
can include a lot of data. In [3], the authors propose the use of a several levels
grid (the cells with many objects are organized as new grids).

Another possible index consists in storing the list of POI objects that
belong to a certain cell into a R-tree. Therefore the index structure is made
of a collection of R-trees and a matrix of references to these R-trees.

3. Redundant Index

Let d be the dimension of a cell from the grid built for the collection of
POI objects (according to section 2.2). We assume that the rectangle D from
the range query is a square and it corresponds to the following query: find all
POI objects located within a maximum distance d0 from a point (x0, y0). To
increase the efficiency of the search, we first find the POI objects located on
the coordinate axes (on each direction), within a maximum distance d0 from
point (x0, y0), therefore:

D(x0, y0; d0) = {(x, y) ∈ ℜ × ℜ| |x− x0| ≤ d0, |y − y0| ≤ d0}
Let s be the maximum possible value of d0. If s is large, then:

• the number of cells from the grid queried is large (according to section
2.2);

• the answer to the range query specified by D(x0, y0, d0) contains a
large number of recordings, situation that is detrimental for most ap-
plications that use such queries.

Next we suggest a possible alteration of the index structure if s < d/2, and
in the next section we prove that in some cases the response time for range
queries respecting the above conditions is reduced.

We build a ”main index” for the grid, as suggested in Section 2.2. For the
above hypothesis (s < d/2, d0 ≤ s), the answer to a range query is located in
one, two or four cells of the grid, as can be seen in Figure 2.

Let q be a range query, D(x0, y0, d0) the associated square and z(x0, y0)
the cell in the grid where point (x0, y0) appears. The answer to the query q is
found by browsing:

• the objects associated to the cell z(x0, y0). Let n(q) the number of
objects in this cell;

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 79

Figure 2. Possible overlays of the range query answer over
the grid area

• the objects from the neighboring cells that intersect D. Let ns(q) be
the number of objects in these cells. If D is in the first case stated by
Figure 2, then ns(q) = 0.

We will denote by n1(q) the number of objects queried in order to find the
answer to q, so n1(q) = n(q) + ns(q).

An additional index - ”the secondary index” is added to the grid. It
contains, for a given cell z, references to objects in the neighboring cells (those
that share a side with z) and located within a minimum distance s from the
sides of the cell z. The areas containing the additional objects attached to a
cell are highlighted in Figure 3.

With this version of index, the answer to a query q specified byD(x0, y0, d0)
is found by:

• browsing the n(q) objects from the main index associated to the cell
z;

• browsing the objects in the secondary index associated to the cell z,
if D is in case 2 or 3 stated by Figure 2. Let nsi(q) be the number of
objects in the secondary index that need to be queried. If D ⊆ z, then
nsi(q) = 0.

We will denote by n2(q) the number of objects queried in order to find the
answer to q, therefore n2(q) = n(q) + nsi(q).

Let C be the collection of POI objects. For a certain d (the dimension of a
cell from the grid) and s (the maximum dimension for the d0 values from the

80 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

Figure 3. Redundant objects attached to a grid cell in the
secondary index

range query) we can build the two index structures (the main and secondary
one) by a single traversal of collection C.

For an object ob = (id, (x, y)) ∈ C we determine:

(a) (i, j) = (
⌊
x
d

⌋
,
⌊y
d

⌋
) and the object is included in the main index of cell

(i, j);
(b) if x ∈ I1 = [i · d, i · d+ s) then left := i− 1 else left := null;

if x ∈ I2 = [(i+ 1) · d− s, (i+ 1) · d) then right := i + 1 else
right := null;
if y ∈ J1 = [j · d, j · d+ s) then bottom := j − 1 else bottom := null;
if y ∈ J2 = [(j + 1) · d− s, (j + 1) · d) then top := j + 1 else top := null;

(c) If at least one of the previous four conditions is satisfied then object ob is
included in the secondary index of cell (m,n). We denote by Si(ob;m,n)
the operation of inserting ob in the secondary index.

i f (l e f t != nu l l) and (top != nu l l) then Si (ob ; l e f t , top) ;

i f (top != nu l l) then Si (obj ; i , top) ;

i f (r i g h t != nu l l) and (top != nu l l) then Si (ob ; r i ght , top) ;

i f (r i g h t != nu l l) then Si (ob ; r i ght , j) ;

i f (r i g h t != nu l l) and (bottom!= nu l l) then Si (ob ; r i ght , bottom) ;

i f (bottom!= nu l l) then Si (ob ; i , bottom) ;

i f (l e f t != nu l l) and (bottom!= nu l l) then Si (ob ; l e f t , bottom) ;

i f (l e f t != nu l l) then Si (ob ; l e f t , j) ;

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 81

Figure 4 illustrates the above presented cases. It can be seen that:

• each object is included in the main index for a single cell;
• objects from the subareas z2, z4, z6, z8 are contained in a single cell of
the secondary index;

• objects from subareas z1, z3, z5, z7 are contained in three cells of the
secondary index;

Figure 4. Objects included in the secondary index.

By redundantly storing references to some objects, the index size grows,
with the size of the secondary index. The induced redundancy coefficient can
be expressed by the following formula:

(1) c =
size(secondary index)

size(main index)

This coefficient depends on the d and s system parameters and on the
object distribution in the generated grid.

For a set of range queries Q we can determine if using the main and a
secondary index is more efficient than the main only index version. In order

82 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

to achieve this we introduce the efficiency coefficient:

(2) e =

∑
q∈Q

n2(q)∑
q∈Q

n1(q)

For e < 1, the total number of accessed objects when applying the new
indexing schema for all queries in Q is smaller than in a classical grid structure
index.

4. Experimental results

In this section we present the experimental results obtained when varying
the values of the parameters introduced in the previous sections.

4.1. The Object Database Collection. In the conducted experiments we
used a real POI database collection provided by one of the major actors in
this field on the market. The main characteristics of this collection are:

• the number of POI objects is 1,195,398;
• the area covered by the database collection is
latitude ∈ [−54.8, 78.2], longitude ∈ [−179.8, 179.4].

For experiments we generated 100,000 range queries, each query being
expressed by a location and a range (x0, y0; d0). The (x0, y0) locations were
randomly generated on the area covered by the POI collection. For each given
s, the d0 parameter values were randomly generated in the interval [s÷ 4, s].

4.2. Measurements. For each d we compute the number of non-empty cells
in the grid. Table 1 shows the number of non-empty cells for a few values of
the d parameter.

d(km) 50 100 150 200 300
Cell Count 11,412 5,243 3,268 2,295 1,384
Table 1. Number of non-empty cells vs grid size.

For a given d and s (a subset of the experimental values) and for all queries
in Q Table 2 shows:

• Secondary Index Size - the size of the secondary index;
• c - the redundancy coefficient;
• N(q) =

∑
q∈Q

n(q);

REDUNDANT SPATIAL INDEX FOR SOLVING RANGE QUERIES 83

• Additionally inspected cells - the number of additional grid cells inter-
sected by all queries;

• Ns(Q) =
∑
q∈Q

ns(q);

• Nsi(Q) =
∑
q∈Q

nsi(q);

• the efficiency coefficient e = N(Q)+Nsi(Q)
N(Q)+Ns(Q) ;

From the Table 2 it can be seen that the efficiency coefficient has a value
less than 1 for many situations. In all these cases the number of analyzed
objects for a variant with a secondary index is smaller than the number of
analyzed objects for a main grid index without redundancy.

Also, the redundancy coefficient has in these cases reasonable values. This
means the overhead incurred for the multiple storage of the same objects would
not impact significantly the data structures stored in the main memory. By

d s Secondary c N(Q) Additionally NS(Q) NSI(Q) e
(km) Index inspected

Size cells
50 5 470,919 0.42 481,095 24,907 103,381 40,642 0.893
50 10 985,209 0.88 481,095 50,078 242,636 170,561 0.900
50 15 1,600,183 1.43 481,095 74,781 293,400 385,180 1.119
100 5 227,479 0.20 1,853,072 12,468 221,971 52,538 0.918
100 10 456,930 0.41 1,853,072 25,061 513,589 176,288 0.857
100 20 1,017,484 0.91 1,853,072 50,403 880,128 682,995 0.928
100 30 1,670,481 1.50 1,853,072 75,182 1,248,760 1,616,484 1.119
150 5 165,392 0.15 4,206,558 8,299 276,158 45,101 0.948
150 10 336,591 0.30 4,206,558 16,630 676,243 187,649 0.900
150 15 510,677 0.46 4,206,558 24,844 930,088 446,989 0.906
150 20 693,832 0.62 4,206,558 33,276 1,249,643 837,634 0.924
150 30 1,110,691 1.00 4,206,558 49,852 1,721,729 1,745,026 1.004
200 5 111,985 0.10 7,320,215 6,232 610,148 68,648 0.932
200 10 222,985 0.20 7,320,215 12,615 1,153,923 214,695 0.889
200 20 511,359 0.46 7,320,215 25,107 1,953,250 797,491 0.875
200 30 800,983 0.72 7,320,215 37,600 2,768,881 1,697,463 0.894
200 40 1,091,544 0.98 7,320,215 49,984 3,578,632 3,188,074 0.964
200 50 1,389,982 1.25 7,320,215 62,557 3,955,536 4,818,800 1.077
300 5 81,718 0.07 17,126,951 4,187 579,144 51,908 0.970
300 10 158,232 0.14 17,126,951 8,347 1,201,525 186,371 0.945
300 20 331,249 0.30 17,126,951 16,612 2,522,389 768,913 0.911
300 30 533,765 0.48 17,126,951 24,796 3,617,474 1,857,947 0.915

Table 2. Number of non-empty cells vs grid size.

84 LEON ŢÂMBULEA, ADRIAN S. DĂRĂBANT, AND ANDREEA NAVROSCHI-SZASZ

analyzing these two factors over a set of queries Q and a typical database, one
can decide whether adding a secondary redundant index like the one proposed
above can improve or not the query response time.

5. Conclusions

In this paper we proposed an improvement on the indexing of a statical
collection of POI objects by adding an additional index. The additional index
uses only redundant references that are copies of some of the entries from the
main grid index. In some cases the proposed method improves the response
time by 10%-15% compared to a typical R-tree or Grid index at the cost
of some additional required memory. Update operations are considered in
the same context as for classical R-trees and Grid indexes and are usually
expensive. This is a well known problem of the R-tree index as well. The
conducted experiments show that there are real life situations where applying
the proposed method helps reducing query response time at the cost of very
little added memory.

References

[1] J. L. Bentley, J. H. Friedman, Data Structures for Range Searching, ACM Comput.
Surv., 11, 4, 397409, 1979.

[2] A. Guttman, R-Trees - A Dynamic Index Structure for Spatial Searching, SIGMOD
Rec., 14(2):4757, 1984.

[3] D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch, Main Memory Evaluation of Mon-
itoring Queries Over Moving Objects, Distrib. Parallel Databases, 15, 2, 2004, 117-135.

[4] Ling. Liu, M. Tamer zsu (Eds.), Encyclopedia of Database Systems, Springer, 2009.
[5] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos, Y. Theodoridis, R-Trees: Theory

and Applications, Series in Advanced Information and Knowledge Processing, Springer
2005.

[6] Ming Qi, Guangzhong Sun, Yun Xu, Query as Region Partition in Managing Moving
Objects for Concurrent Continuous Query, International Journal of Research in Com-
puter Science, 2 (1): pp. 1-6, 2011.

[7] J. Nievergelt, H. Hinterberger, K. C. Sevcik, The Grid File: An Adaptable, Symmetric
Multikey File Structure, ACM Transactions on Database Systems, 9(1):3871, 1984.

[8] Points of Interest Core, W3CWorking Draft 12 May 2011, http://www.w3.org/TR/poi-
core/.

[9] A.Sabau, Management of Spatio-Temporal Databases, PhD Thesis, Cluj-Napoca 2007.
[10] D. Sidlauskas , S. Saltenis , Ch. W. Christiansen , J. M. Johansen , D. Saulys, Trees

or Grids? Indexing Moving Objects in Main Memory, Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, 2009, Seattle, Washington.

Babes Bolyai University, Faculty of Mathematics and Computer Science,
Cluj Napoca, Romania

E-mail address: leon@cs.ubbcluj.ro, dadi@cs.ubbcluj.ro, deiush@cs.ubbcluj.ro

