STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LVII, Number 4, 2012

ISSUES IN COLLECTIONS FRAMEWORK DESIGN

VIRGINIA NICULESCU, DANA LUPSA, AND RADU LUPSA

ABSTRACT. A good framework/library can reduce the cost of developing an ap-
plication. This study is an exploration of issues related to designing collections
frameworks by analyzing the existing approaches and by emphasizing the fun-
damentals and the main desiderata of such developments. The corresponding
theoretical concepts are analyzed, and for defining data structures an approach
based on properties is discussed. Also, some design leading questions are specified
in order to emphasize possible new development approaches.

1. INTRODUCTION

In the imperative programming setting data structures represent an old and a
very important issue. So, different libraries and frameworks have been built in time,
based on different programming paradigms.

Initially, the focus was on the structure of the data and on different strategies
used for their representation into the memory. The behavior of such a structure was
not strictly defined since anyway, the encapsulation of the data with the operations
was not yet possible.

By introducing the concept of abstract data type [2], data structures were defined
in a more accurate and formal way, by introducing well defined types. A step forward
has been done on this subject with object oriented programming (OOP) - a higher
order of abstraction being achieved.

Based on OOP we may not only define generic data structures by using type or
parametric polymorphism, but also we can separate the definitions from the imple-
mentations by using interfaces [9]. Design patterns ([5], [7], [8]) moved things forward,
and introduced more flexibility and reusability for data structures.

Genericity is another important issue related to the field of data structures. Any
kind of data structure for a collection is formed by a number of elements which are
usually of the same type. A specific collection has properties and behaviour which
are not dependent on the type of its constitutive elements. So, generally, we may
consider them as shape-dependent structures. When properties such as sorting are
introduced they could became value-dependent structures.

Received by the editors: September 12, 2012.

2000 Mathematics Subject Classification. 68P05.

1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; E.2 [Data]: Data Storage
Representation .

Key words and phrases. data structures, collections frameworks, genericity, representation.

30

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 31

1.1. Motivation and organization of this paper. Our purpose is to investigate
the possibility to create a good framework/library for working with collection data
structures.

It is well known that a good framework can reduce the cost of developing an
application by an order of magnitude because it lets you reuse both design and code.
To consider the problem of software reuse in the moment of the design is not an easy
task. A nice description of what this means is made in [10]: ”Developing reusable
frameworks cannot occur by simply setting down and thinking about the problem
domain. No one has the insight to come up with the proper abstractions. Domain
experts won’t understand how to codify the abstractions that they have in their heads,
and programmers won’t understand the domain well enough to derive the abstractions.
In fact, often there are abstractions that do not become apparent until a framework
has been reused.”

Collection class libraries have been criticized as being too unwieldy, too inflexible
and generally difficult to use [16]. It has been pointed out, for example, that to
provide for future flexibility the introduction of many incrementally different types is
needed, but huge hierarchies are hard to understand and to use [11].

On short, a good framework is one that makes the programmers job easier and
programs better [16]. Much of the engineering effort should go into the design of
the class and the type system [11]. A clean, good design would keep things easy to
implement and easy to use. In order to achieve this, our research investigates basic,
fundamental properties of collection.

In order to make a fundamental analysis on the collections design we start with
a short presentation of collections (Section 2). Section 3 collects some important
research leading questions. We analyze existing solutions in Section 4 and Section
5. In Section 4, we present programming paradigms used by two existing solutions
and emphasize their advantages and disadvantages. In Section 5, we examine some
existing approaches for designing collections framework and compare them with our
ideas.

2. IMPORTANT ISSUES REGARDING COLLECTIONS

2.1. Collection and containers. The term container in modern computer program-
ming can actually refer to many things. A container is an object created to hold
other objects. While the term container is used in C++4 STL to denote collection
containers, Java programmers use the term “collections” rather than “containers”.
We may consider that the meaning of “container” term is more related to the storage,
and the term “collection” is more related to the represented concept.

In this paper, we are going to use the term collection. Exceptions are situations
when we are presenting concepts or terminology used by C++ STL.

Java documentation [1] says that a collection is sometimes called a container
and it is simply an object that groups multiple elements into a single unit. Collections
are used to store, retrieve, manipulate, and communicate aggregate data.

32 VIRGINIA NICULESCU, DANA LUPSA, AND RADU LUPSA

Collection | Alternate Remarks
names
Bag multiset, collec- | admit duplicate elements
tion
Set no duplicate elements
Sequence | list elements are arranged in a strict linear order;

order information has nothing in common with the
elements themselves; it is provided as separate in-
formation within operations (when needed)

Stack specific: insertions/extractions are made follow-
ing a fixed (predefined) strategy: Last In First Out
(LIFO);
Queue specific: insertions/extractions are made follow-
ing a fixed (predefined) strategy: First In First Out
(FIFO);
DeQueue specific: insertions/extractions can be made
to/from both ends
Map unique associa- | elements are of type (key, value) ; keys are unique

tive container,
associative ar-
ray, dictionary

Multimap | multiple as- | elements are of type (key, value); keys are not
sociative con- | unique
tainer

TABLE 1. The most used collections

We present in table 1 a list of most important collections that are known as widely
used in programs, and that are provided by most collections frameworks. Collections
alternate names and some important remarks are also presented in the table.

A study of collections framework design should pay special attention to its con-
ceptual and logical foundations. A theoretical study of general collection properties
is investigated in relation with STL [17] in the next section.

2.2. Collection container properties. A property is a feature that could be added
to a data structure and then could be removed; it is something that fundamentally
characterized the data structure.

Starting from general collection container concepts presented in [17], we make an
inventory with the main properties that can make the difference between containers.

unordered - sequence
multiple - unique

simple - pair
non-associative - associative

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 33

The first property can be considered as default. These are unordered, multiple,
simple, non-associative. A bag is a collection defined by using only default properties.

We should note that associative property means that we have a pair collection and
the first element in the pair is the key - that have special properties associated with
it. For example, associative containers are supposed to offer fast access to elements
based on keys. That imposes restrictions over the possible choices to implement the
collection.

Sorted is a property can be added to many collections but, in this way, they
became value-dependent structures. In this study, we are not going to include it,
since we restrain the analysis only to shape-dependent structures.

Collection sequence unique | key-ed (associative)
Bag - - -
Set - yes -
Sequence yes - -
Stack used for operation specification - -

Queue used for operation specification - -
DeQueue | used for operation specification - -

Map - yes yes
Multimap - - yes

TABLE 2. Collections and their properties

2.3. Building collections by their properties. In this section we are going to
present collections mainly based on the properties enumerated before.

We remarked that associative property is discussed only when we have a pair
collection. Associative collections support efficient retrieval of elements (values) based
on keys. That is why we are going to use only one property that we name it key-ed
instead of having pair and associative properties.

Table 2 defines the basic collections based on the considered properties.

Still, we may observe that a set can be also defined as unordered, unique and
key-ed collection. That is: the element is its key, no value is used, and we ask for
efficient retrieval of elements based on keys.

Note that some of the basic collections imply specific restrictions regarding opera-
tions. Examples are adding and extracting elements for stacks, queues, and deQueues.
Another example is the element access operation for key-ed collections. They are not
expressed by using properties. Starting from this observation we may consider an
extension of the properties set by including stack or queue element access types as
properties. But this kind of approach would lead not only to an exponential growth of
number of properties combination, but also will add, as properties, restrictions that
are usually defined at operations level.

34 VIRGINIA NICULESCU, DANA LUPSA, AND RADU LUPSA

3. WHAT TO CONSIDER WHEN DESIGNING COLLECTIONS FRAMEWORKS

In order to make a fundamental analysis on a collections framework design we
may start by putting some important research leading questions:

e Which are the fundamentals that should be considered when designing col-
lections framework? (In this paper, section 2 presents shortly collections
concepts and their properties).

e Is a hierarchical approach appropriate for developing collections framework?
(see section 4.1) Are the types that correspond to the main collections in
relations of subtyping kind only? If not, what other relations should be con-
sidered?

e What are the solutions to assure genericity? Which is best? (see section 4.2)

e How certain levels of abstractness influence collections framework properties?
(See section 4.3.) Which has to be the leading focus: the needed behavior or
the performance?

Within each of the above questions, we also have in mind the next question:

e What are the important lessons to be learn from others experience?

4. COLLECTIONS FRAMEWORK DESIGN: A SHORT OVERVIEW OF TWO EXISTING
SOLUTIONS

In this section we are going to analyze STL versus Java Collection Framework
(JCF) ([12], [15]). Both JCF and C++ STL provide collections frameworks. There are
a number of differences, some of them stem from the language features and philosophy.
Some other differences are simply design choices and we are not going to present them
here.

4.1. Interfaces versus Concepts. To define collections, Java [1] uses a clean sepa-
ration between interfaces: Collection, List, Set, SortedSet, Map, SortedMap and
implementations: ArrayList, LinkedList, HashSet, TreeSet, HashMap, TreeMap.

On the other hand, STL containers are all concrete classes, with no interface-
implementation hierarchy, in order to make them more efficient.

4.1.1. Problems defining a hierarchy. Java tried to classify collections based on their
properties and behaviour. But things are not straight forward and Java classifications
suffered small modifications over time. For example, Vector became ArrayList, while
Vector stayed only for compatibility and is deprecated in the current version.

Note that, even if Java language is based on only one hierarchy of classes (derived
from Object), in JCF there is not only one class hierarchy: Map is not a Collection.
In the same time, STL map and unordered map are truly containers of key-value pair
(std::pair<kK,V>).

In [16] it is specified that Java Map doesn’t extend Collection by design. Collec-
tion could be made to extend Map, but forcing this, it leads to an unnatural interface.
If a Map would be a Collection, its elements should be key-value pairs, but this pro-
vides a very limited Map abstraction. There are two important problems: accessing a

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 35

Collection

T

List Set SortedMap

Map

SortedSet

FI1GURE 1. Java Collections Framework major interfaces.

value for a given key, and deletion of an entry for a given key, without knowing the
value it maps to.

4.1.2. Uniform naming scheme. STL’s containers have a uniform naming scheme,
with identical names for functions with identical roles. Note that a set of member
function names and arguments, together with their semantic, is called a concept, and
a class that actually implements those functions is said to implement the concept. As
an example, an STL container is required to have a pair of functions, begin() and
end (), returning iterators to the first element and, respectively, just after the last
element. This implicitly implies that there is an order between elements, so that we
have a first and a last element. Although the concepts are not part of the language,
but rather a convention between programmers, and there cannot exist a run-time
polymorphism based on concepts, concepts allow a compile-time polymorphism:
a function template can be parameterized on a type that implements the container
concept; thus, that function can call begin() and end () on the argument of container

type.

4.2. Genericity. Parametric genericity, initially represented in object oriented set-
ting by source code reuse mechanism as C++ templates, became more and more
popular and other object oriented languages as Java and C# enhanced their new
versions with mechanisms that offer parametric types.

In C++ the template mechanism allows us not to create a single class, but to
specify only once the pattern for creation of some classes that are different only by
the type of some parameters. The template mechanism allows a very high degree of
flexibility, but it is considered in some literature not a really parametric polymorphism
mechanism since for each actual parameter a new class is created.

The mechanism which was included in Java since JDK 1.5 is considered more effi-
cient since just one class is created for each parameterized class. Also, the mechanism

36 VIRGINIA NICULESCU, DANA LUPSA, AND RADU LUPSA

of parameterized Java classes allows bounded polymorphism — the specification of a
certain behavior of parameters by interface implementation.
A similar mechanism is implemented in C# too.

A comparison between C++ templates and the extensions for generics of the C#
and Java languages based on their suitability for scientific computing was done in [6].
These measurements suggest that both Java(TM) and C# generics introduce only
little run time overhead when compared with non-parameterized implementations.
With respect to scientific application, C# generics have the advantage of allowing
value types (including builtin types) as parameters of generic classes and methods.
Also, in [3] there is study about the performance of generics for scientific computing
in various programming languages, based on a standard numeric benchmarks. The
conclusion was that in current implementations of generics must be improved before
they are used for efficiency-critical scientific applications.

The C++ templates mechanism is considered for implementing parametric poly-
morphism based on a “heterogeneous” approach. The “heterogeneous” approach con-
structs a special class for each different use of the type parameters. The compiled
code is fast, but the object code could become bulky since we have many different
versions of each class.

Java generics implement “homogenous” approach of the parametric polymor-
phism. Since is based on “type erasing” we have strong restrictions, and maybe
the most important is represented by the impossibility of specifying static members
for the generics.

4.3. Level of Abstractness. From the previous comparison we may conclude that
Java collections design is based on the corresponding abstract definitions (Abstract
Data Types), when STL design has more utilitarian focus. So we may conclude that
the abstraction is higher for first one. If the goal would be to establish to which extend
these approaches are the most appropriate and useful for the common developers, then
the task would be very difficult. The well trained developers may consider that the
STL approach offers rapidity and better safety. On the other hand JCF is much easier
to learn and deal with.

A low level of programming focuses on performance and usually doesn’t use an
intermediary tool as a framework. A framework design should be leaded by the
behavior but in the same time it should not ignore the performance and safety. The
choice should consider the programmer needs.

5. SOME OTHER COLLECTIONS FRAMEWORKS APPROACHES

There are others collections frameworks as well. The Guava project contains sev-
eral of Google’s core libraries that they rely on in their Java-based projects: collec-
tions, caching, primitives support, concurrency libraries, common annotations, string
processing, 1/0, and so forth. Each of these tools really do get used every day by
Googlers, in production services [14].

There are also extensions of existing frameworks. For example, utilities available
in java.util.Collections (from JCF) are extended by fastutil by providing type-specific

ISSUES IN COLLECTIONS FRAMEWORK DESIGN 37

maps, sets, lists and queues with a small memory footprint and fast access and in-
sertion. Fastutil came up as a necessity during the development of a web crawler,
as they needed to manage structures with dozens of millions of items very efficiently
[13].

Another way to model existing collections, is to reconsider the way they are de-
fined. A collections framework based on set theory is Yet Another Collections Library
(YACL) [18]. The project YACL consider a model in which Function extends Relation
extends Set. Bags and Sequences extend Function. Hence a Function (equivalent to
Sun’s Map class/interface) is a type of Set. They build a theoretically sound collec-
tions library on the top of JCF Set: Set implements java.util.Set. All classes can be
constructed from java.util collections and maps (where applicable).

In [4], the aim is to define a collection library for Java which uses multiple inher-
itance to offer a flexible framework for defining collection types rather than providing
a complex exhaustive set of particular collection classes. They identify a small num-
ber of software engineering concepts relevant to the design of libraries of collections.
They distinguish three basic orthogonal semantic properties of collections: ordering of
elements, definition and handling of duplicate elements, definition of keys for efficient
search. They use the next properties : order (ordered, sorted, userOrdered), dupli-
cates (duplFree, dupllgnore, duplError) and search (searchable) that are intended to
extend JCF. Particular collection types should be built by using derivation and by
specifying their properties in terms of these basic types. For example, the interface
type 'Bag’ can be defined as:
interface Bag[ELEMENT] extends Collection[ELEMENT] {}
and the type ’List’ as:
interface List[ELEMENT]
extends UserOrdered[ELEMENT], Bag[ELEMENT] {}

Because we want to get an clean design, our idea is not to extend other collections,
but rather to redefine collections themselves in terms of their properties. We identified
some concepts relevant to the design of collections framework. Among them, there
are some that are present in [4]: UserOrdered as a property that we named Sequence
(in opposition with unordered), Duplicates (that is in opposition with unique, and we
named it multiple). The definition of List in [4] corresponds to our definition, but we
avoid using bag and collections in the same time. We also tried to avoid using any
reference to bag when specifying a list. We also considered one new property in our
classification (key-ed) although it was not our purpose to make an inventory of some
new and not yet existing properties, as we based our approach on STL concepts [17].

We reconsider the way collections are defined by considering small number of
software engineering concepts relevant to the design of libraries of collections.

6. CONCLUSIONS

Since in the literature there are different classifications and definitions for the
types corresponding to different collections, the existing implementation solutions -
frameworks - are also very different. The authors of this paper are conscious of,
and try to overview different initiatives. In this paper, an inventory of theoretical

38 VIRGINIA NICULESCU, DANA LUPSA, AND RADU LUPSA

concepts is made and existing collections frameworks are compared. We have specified
some design leading questions and for each of them we have done an analysis in
specific sections of this paper. Their role is to emphasize possible new development
approaches.

The goal of this paper is to to investigate possible approaches to the design a
good framework for working with collection data structures, by analyzing the exist-
ing solutions and by emphasizing the fundamentals and the main desiderata of such
developments.

REFERENCES

[1] J. Bloch, The Java Tutorial. Trail: Collections
http://docs.oracle.com/javase/tutorial/collections/.

[2] L. Cardelli, P. Wegner, On understanding types, data abstraction, and polymorphism ACM COM-
PUTING SURVEYS, (1985).

[3] L. Dragan, S.M. Watt, Performance Analysis of Generics in Scientific Computing, Proceedings of
Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’05), 2005, pp.93-100.

[4] M. Evered, G. Menger, J. L. Keedy, A. Schmolitzky, A Useable Collection Framework for Java,
16th TASTED Intl. Conf. on Applied Informatics, Garmisch Partenkirchen, 1998.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object
Oriented Software, Addison-Wesley, 1994.

[6] J. Gerlach, J. Kneis, Generic programming for scientific computing in C++, Java, and C#.
Lecture Notes in Computer Science. Proceedings of International Workshop on Advanced Parallel
Processing Technologies (APPT) Xiamen, China, 2003, pp.301-310.

[7] D. Nguyen, Design Patterns for Data Structures, SIGCSE Bulletin, 30, 1, March 1998, 336-340.

[8] V. Niculescu, G. Czibula, Fundamental Data Structures and Algorithms. An Object-Oriented
Perspective, Casa Cartii de Stiinta, 2009 (in Romanian).

[9] V. Niculescu, Storage Independence in Data Structures Implementation, Studia Universitatis
?Babes-Bolyai”, Informatica, Special Issue, LVI(3), pp. 21-26, 2011.

[10] D. Roberts, R. Johnson, Evolving Frameworks: A Pattern Language for Developing Object-
Oriented Frameworks, in Proceedings of the Third Conference on Pattern Languages and Pro-
gramming, 1996, http://st-www.cs.illinois.edu/users/droberts/evolve.html

[11] C. Szypersky, S. Omohundro, S. Murer Engineering a Programming Language: The Type and
Class System of Sather, in Programming Languages and System Architectures, ed. J. Gutknecht,
Springer-Verlag, pp. 208-227, 1993.

[12] B. Stroustrup, M. Ellis, The Annotated Reference C++ Manual, Addison-Wesley, 1994.

[13] fastutil: Fast & compact type-specific collections for Java, http://fastutil.dsi.unimi.it/

[14] Guava project, https://code.google.com/p/guava-libraries/

[15] Generic Java,
http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html

[16] Java.The Collections Framework,
http://download.oracle.com/javase/1.5.0/docs/guide/collections/

[17] STL Programmer’s Guide, http://www.sgi.com/tech/stl/index.html

[18] YACL - Yet Another Collections Library, http://sourceforge.net/projects/zedlib

DEPARTMENT OF COMPUTER SCIENCE, BABES-BOLYAI UNIVERSITY, KOGALNICEANU 1, 400084,
CLuJ-NAPOCA, ROMANIA
E-mail address: {vniculescu, dana, rlupsa}@cs.ubbcluj.ro

