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GENERATING PERT NETWORK WITH TEMPORAL
CONSTRAINTS

NASSER EDDINE MOUHOUB® AND SAMIR AKROUF®

ABSTRACT. A scheduling problem is organizing in time a set of activities,
so as to satisfy a set of constraints and optimize the result. The temporal
constraint modifies the project scheduling, therefore in loses its character-
istics. Our objective is to solve this problem by finding the various types
of temporal constraints then modeling them by using graphs. Furthermore
we apply a technique for transforming an AoN graph (Activities on Nodes)
which is unique and contains a significant number of arcs. This graph is
not preferred by practitioners of project management. We transform the
AoN graph into an AoA graph (Activities on Arcs) which contains fewer
arcs and is preferred by practitioners of project management. In this paper
we present some concepts of line graphs and an illustrative example of the
proposed method.

1. INTRODUCTION

In project scheduling problems, operational monitoring activities are very
important. The project manager draws up the schedule by using graphs. The
drawing of AoN (Activities on Nodes) graph also called potential graph or
French graph is easy because of its uniqueness despite the large number of arcs
it generates. Besides the AoA (Activities on Arcs) graph also called PERT
network or American graph is more difficult because of the dummy arcs it
generates. However, practitioners prefer to work with the AoA graph because
it is easy to read; each activity is represented by an arc. Specialists who insist
on using the AoA graph have a number of arguments to justify their choice.
This is why according to Fink et al. [1], it is more concise. Furthermore,
Hendrickson et al. [2] explains that it is close to the famous Gantt diagram.
According to Cohen et al. [3], the structure of the PERT network is much
more suitable for certain analytical techniques and optimization formulations.
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However, the major disadvantage of this method is in the existence of dummy
arcs (see figure 3. (a) and (b)). Their number is likely to be significantly high
especially if the size of the network is too large, thus the AoA graph is not
unique. In this paper, we focus on finding a method to move from a simple
graph (AoN graph) to an AoA graph that will be correct and will respect
the scheduling table taking into account prior and temporal constraints. This
method will be a draft for the construction of an algorithm that will achieve
the transition from the AoN graph to the AoA graph taking into account the
temporal constraints.

2. THE PROJECT SCHEDULING

The constraints to which are subjected the various activities, and con-
tributing to the realization of the project, are of various types. We distinguish
the potential constraints, disjunctive and cumulative constraints. The poten-
tial constraints are the following;:

e The constraints of anteriority according to which an activity j cannot
start before an activity ¢ is finished, for example, the construction of
the pillars follows the foundations

e Temporal constraints which means that a given activity ¢ cannot begin
before an imposed date, or that it can be completed after an imposed
date.

The problem of scheduling with only potential constraints is called project
scheduling problem. Lacomme and al. Paper [4] presents the two conventions
which are used in practice for displaying project networks:

2.1. Activity on node graph (AoN). Each activity is represented by a
node in the network. A precedence relationship between two activities is
represented by an arc or link between the two (see Figure 1). This graph
is called the Activity on Node graph (AoN graph).
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FIGURE 1. The activity u, with duration t(u), precedes the
activity v.
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2.2. Activity on arc graph (AoA). Each activity is represented by an arc
in the network. If activity v must precede activity v, there is an arc from u
to v. Thus, the nodes represent events or ”milestones” (e.g., “finished activity
u”) like in Figure 2. This graph is called the Activity on Arc graph (AoA
graph) or PERT graph.

?'u‘lﬁn '?

the end event of the activity

the beginning event of the activity

FI1GURE 2. The activity u precedes the activity v in PERT graph.

The representation of Table 1 (Figure 3. (a)) in PERT graph, is false; to
correct it we introduce an additional activity of duration 0 which does not in-
fluence over the total duration of the project. This activity is called a dummy
activity. We then modify the table (see Table 2) of scheduling and the PERT
graph (figure 3. (b)) the drawing will be easy.

The introduction of the dummy activities gives the possibility to solve certain
situations and raise ambiguities. They do not take in consideration any ma-
terial or financial mean [5].

Code Predecessors
C a,b
d b

TABLE 1. An-under table of precedence of ¢, d.

<
, b a2

FIGURE 3.(a). The problem of representation in PERT graph.
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Code Predecessors

C a,f
d b
f b

TABLE 2. The new under-table of precedence of C, D and F.

FIGURE 3. (b). Introduction of the dummy activity f and the
representation in PERT graph.

For more details for these two methods and their differences, the reader can
refer to [6], [7] and [8]. The study of this field is not only in order to facilitate
the task to experts, but also for theoretical interests, these are always renewed
by the researchers. We can remind that the durations are not mentioned on
the different graphs. These durations can be uncertain. For this precise case,
there are more details in [9], [10] and [11].

3. THE LINE GRAPH OF GRAPH

Let G = (X,U) a simple or multiple digraph. We build starting from
G a graph or line graph noted L(G), called line graph or line digraph of
G as follows: The arcs of L(G) are in bijective mapping with the nodes of
G for simplicity reasons; we give the same name to the arcs of G and the
corresponding nodes of L(G). Two nodes u and v of L(G) are connected by
an arc of u towards v if and only if the arcs v and v of G are such as the final
end of v matches with the initial end of v, i.e. T'(u) = I(v) [12] (see Figure 4).

3.1. Example. Let G the following directed acyclic graph be (Figure 4): By
definition, any directed graph G admits a unique line graph L(G). On the
other hand, two non isomorphs directed acyclic graphs can have the same line
graph.
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FIGURE 4. A graph G and his line graph L(G).

3.2. The opposite problem. We suppose the following opposite problem:
Being given a directed acyclic graph H, is it the line graph of any directed
acyclic graph? In other words, does there exist a graph G such as L(G) is
isomorphs with H, where H = L(G)?

G admits a configuration “Z” if G contains four nodes a, b, ¢ and d such
as if (a,c), (b,c) and (b,d) are arcs of G, then (a,d) is not an arc of G. With
an only aim of simplicity, one will give the name of bar of “Z” to arc (b, c) (see
Figure 5) [13].

Configuration “Z” appears when two nodes have common successors and
no common successors or by symmetry when two nodes have common prede-
cessors and no common predecessors.

a . C a —Pk.c ' c . . C
b _’|d b. N be =’u d
FI1GURE 5. The configuration “Z” and his forms.

3.3. Theorem. The line graphs have been studied but we will present, in this
section, the features in which we are interested and obtained from [12]. H is
the line graph of a directed acyclic graph if:

e H does not contain any “Z” configuration.
e Arcs of H can be partitioned in a complete bipartite B; = (X, Y;),i =
I,...,m, suchas X;NX;=0 and Y;NY; =0,Yi#j.
The bipartite B; of H are then in a bijection with the nodes also noted B;
which are neither sources nor well, two nodes B; and B; of G being connected
by an arc from B; towards B; if and only if the complete bipartite B; and B;
of H are such as Y; N X; = () (figure 6).
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' 1a
FIGURE 6. A complete bipartite B of G and the star of G.

- H does not contain any configuration “Z” and any pair of nodes having
common successors has all their common successors.
- Any pair of nodes having common predecessors has all their common prede-
cessors. For more details on this theorem, the reader can refer to [12].

Thus, H is not the line graph of any directed acyclic graph if and only if
there is a pair of nodes having common successors and no common successors
or common predecessors and no common predecessors [5].

4. GENERATING AOA GRAPH

Because of the facility of the use of AoA graph, we must concentrate

our efforts on the study of the possibility of transforming the AoN graph (a
significant number of arcs) to AoA graph (a reduced number of arcs).
So, we want to know how to transform the graph H (which is an AoN graph)
in order to get a new graph which is the line graph (AoA graph). According to
[5], the difficulty which arises is to know if H does contain “Z” configurations
or not? If it does not, it is a line graph and the transformation is immediate
(as in Figure 7).

Code Predecessors
b1 Al y eeey Ay

b, at, ..., am
TABLE 3. The sub-table of anteriorities.

A -b,

FIGURE 7. (a): The complete bipartite B in the AoN graph.
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FIGURE 7. (b): The star B of the corresponding AoA graph.

But if it contains “Z” configurations, we have to eliminate the bare from
each “Z” preserving the constraints of succession. We then introduce, in the
AoN graph, a dummy arc f in every “Z” (Figure 8). The introduction of the

a .C 3-7-
Z f'
b d b-L; .d
FiGure 8. “Z” configuration, his corresponding transforma-
tion in AoN graph and the partition of the complete bipartite.

dummy arcs aims to eliminate all the “Z” configurations from the AoN graph,
the constraints remain unchanged. We should recall that the dummy arcs are
not necessary in the AoN graph but are introduced only to build AoA graph.
For more details on this transformation from AoN graph to AoA, the reader
can refer to [5] and [13].

5. THE TEMPORAL CONSTRAINTS

The temporal constraint is a time allocation constraint. She comes from

imperative management constraints such as the supply availability or time
delivery, etc.
It specifies the time interval (or semi-interval) during which it is possible to
perform or carry out an activity. These constraints are often due to availability
of stakeholders (human resources): for example a company which produces
frames can only intervene between June 15 and August 31 [1].

The temporal constraint affects the project scheduling and changes. He no
longer has the characteristics of the project scheduling. The problem therefore,
is to find a way or a technique to normalize the situation and bring it back to
the project scheduling. In the following, we will propose an original method
which allows us to model the temporal constraints and include them in project
scheduling.
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We can classify the most important temporal constraints into six types
and by adding the precedence constraint they become seven:

C1: Activity A starts t time units before the work begins.

C2: Activity A can only start ¢ time units after the beginning of work.

C3: Activity B must start ¢ time units after the end of activity A.

C4: Activity B starts a fraction of time a/b after the start of activity A
(a < b).

C5: Activity B must start ¢ time after the start of activity A (t < t4).

C6: Activity A must start before time t.

C7: Activity B must immediately follow the activity A.

5.1. Modeling temporal constraints. In project scheduling, which is a
particularly in an AoN graph, incident arcs outside a node (that is to say an
activity) have the same value.

The presence of temporal constraints in the graph AoN violates this prop-
erty, which makes solving the project scheduling impossible. Calculating dates
and critical path research ... also become impossible.

Modeling by using graphs can solve this problem. We will present in the
following a new technique that allows handling such constraints.

The Figure 9 gives the unique representation of these constraints in the
graph AoN. It is clear that the values on the arcs incident to a node outside
are different (see the example in Figure 11. (a)). Here we leave the project
scheduling.

FIGURE 9. Main temporal constraints in AoN graph.
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FIGURE 10. (a). Representation of (C2) and (C3) constraints in AoA graph.
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FIGURE 10. (b). Another Representation of (C2) and (C3) constraints in
AoA graph with less activities than in (a).
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FIGURE 10. (c). Representation of (C4) and (C5) constraints in AoA graph.
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FIGURE 10. (d). Representation of (C4) and (C5) constraints in AoA graph
with the same number of activities as in (c).

Figure 10. (a) shows that in the AoA graph, each activity coming after
the activity A, has its own dummy arc uwi. This representation is poor because
the number of dummy arcs may be very important, which clutters the graph.
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FIGURE 10. (e). type of constraints in PERT graph combining
(c) and (d).

A Dbetter representation (Figure 10. (b)) consists in gathering several
dummy arcs succeeding the real activity A and which have the same value
in a single dummy activity. Note that the dummy arc in this context is not of
zero duration. She is introduced to solve this problem and introduce the time
constraints in the project scheduling.

For constraints of type (C4) and (C5), we notice that both starts after the
beginning of activity A. Representation in AoA graph implies the segmentation
of A into several tasks, in the general case (A = Ay +As+ ... + Agy1). Two
models of these constraints are possible (figure 10 (c). and 10. (d)). We note
that the representation of figure 10. (d) is more convenient.

Finally, we can combine the figure 10. (b) and 10. (d) keeping in mind
the idea of minimizing dummy arcs.

In conclusion, to arrive to figure 10. (e) we must modify in the AoN
graph, the arcs incident outside a vertex and who do not have the same value,
by introducing dummy arcs of length 0 in order to partition the complete
bipartite graph with AoN graph. All these combinations lead us to the changes
made in the two graphs AoA and AoN respectively (figure 11)

Correspondence between the representations of temporal constraints in
AoN graph and in AoA graph is our goal, we modify figure 9 in figure 11. (a)
and figure 10. (e) in figure 11. (b).

The introduction of activities fo, ..., fr of times to — t1, ..., — t1 has the
advantage of giving the same value to the arcs of the same initial node in
the graph AoN. There is no difficulty to verify that the arcs of the graph
(Figure 11. (a)) are partitioned into a complete bipartite graph and that is
the associate graph of the graph in Figure 11. (b).

For example, Let A be an activity of duration 5 time units. Suppose that:
A precedes B,
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FIGURE 11. (a). modification in AoN graph.

FIGURE 11. (b). Activity A is subdivised as (Aj,f;) in AoN
graph. Arcs of the same initial node have the same value.

B1 and B2 can not start a unit of time after the start of activity A,
B3 and B4 begin only 4 time units after the start of A

B5 can not start until A is 3/4 finished,

B6 and B7 begin only 6 time units after the end of A.

In AoN graph, let us draw the arcs leaving the node A (Fig.12.):
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FIGURE 12. (b). is subdivised as (A1, f1) in AoN graph. Arcs of the same
initial node have the same value.

FIGURE 12. (c¢). No modification in AoN graph.

To illustrate what we have seen since the beginning of this paper and
to construct AoA graph from AoN graph taking into account temporal con-
straints, we consider the following example:
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5.2. Example. The Table 4 gives the precedence constraints.

Activity Description Predecessors Duratiion

A Site clearing 6 -

B Removal of trees 5 -

C General excavation 8 -

D Grading general area 4 A

E Excavation for trenches 3 A, B, C

F Placing formwork and 9 C
reinforcement for concrete

G Installing sewer lines 2 D, F

H Installing other utilities 8 EF

1 Pouring concrete 5 EF

TABLE 4. Precedence relations and durations for a nine activ-
ity project example.

Temporal constraints are:
e B can only start 3 time units after the beginning of the work.
C can begin only after 7 time units the work begins.
E begins when C is executed to 3/4
G starts 4 units of time after the end of E.
The graphs in Figure 13. (a, b, ¢, d) show the changes in the AoN graph, then
the AoA graph construction:

C_t T 2 '

FIGURE 13. (a). graph from the schedule table (see Table 4.). Arcs in bold
represents temporal constraints.
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FIGURE 13. (b). AoN graph whose arcs have the same initial node have the
same value. The dummy arcs from temporal constraints g;: activities o, C, E
are divided in two activities. “Z” bars are in bold..
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FIGURE 13. (c¢). The AoN graph with no “Z” configuration and whose nodes
are reorganized into levels. We can verify that the arcs can be partitioned
into complete bipartite.

FIGURE 13. (d). AoA graph of Table 4. Activities duration not included
(the fi “in bold” have duration zero).

5.3. Discussion. The algorithm inspired from this method finishes since the
loop is carried out only when there is a ’Z’ sub graph or a temporal constraint.
The number of ’Z’ in AoN graph is known and finite. Also, the number of
temporal constraints is known. The rest of the algorithm is a succession of
simple instructions. The complexity of the algorithm is polynomial (O(n?)).
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6. CONCLUSION

This work has introduced graphs associates in project scheduling problems,
with or without the presence of 'Z’ in the graph for AoN, for AoA graph
construction. He also used the modeling of temporal constraints that can be
included in the project scheduling when the resolution becomes easier thus
the calculation of dates at the earliest, at the latest, free margins, the critical
path, etc becomes possible by applying Bellman algorithm.

This work opens up perspectives, such as searching the minimal PERT
graph network in terms of dummy arcs is NP-hard or in terms of nodes. The
project scheduling with limited resources can be viewed by using modeling
with graphs.
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