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A COLLABORATIVE EVOLUTIONARY APPROACH TO

RESOURCE-CONSTRAINED PROJECT SCHEDULING

ANCA ANDREICA, CAMELIA CHIRA

Abstract. Resource-constrained project scheduling is an NP-hard opti-
mization problem focusing on the task of time-dependent resource alloca-
tion for a project. The current paper presents the application of a geo-
metric collaborative evolutionary algorithm to this problem. Important
features of the evolutionary model include population topology, asynchro-
nous search and adaptive selection/recombination strategy. Each individ-
ual has an agent-inspired behaviour in the sense that communication with
other individuals is possible and facilitates the selection of a mate for re-
combination. The evolving population has a geometrical structure and
is furthermore organized in dynamic societies with different strategies for
recombination. Numerical experiments are performed for several project
instances and results emphasize a good performance of the geometric col-
laborative evolutionary model.

1. Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is of
great importance in a large number of application areas including construc-
tion and civil engineering, manufacturing, production planning, logistics and
project management. RCPSP requires the allocation of limited resources to
dependent activities over time, such that the makespan of the project is min-
imized. The challenges associated with RCPSP relate to complex resource
constraints as well as activity dependencies. It has been shown that RCPSP
belongs to the class of NP-hard optimization problems [1] which means that
exact solutions can not be found in polynomial time by running an algorithm.
Therefore, there is a high interest in developing good approximation methods
to address RCPSP with the aim of finding near-optimal (or optimal) solutions
using limited resources. Inspired by the process of natural evolution, genetic
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algorithms represent good approximation methods for solving problems be-
longing to this class. Bio-inspired heuristic approaches to RCPSP include a
genetic algorithm with a new permutation of priority-based encoding scheme
[13], a permutation-based elitist genetic algorithm [8], an algorithm based on
a priority value encoding scheme [12] and a hybrid genetic algorithm [11].

The evolutionary framework used in this paper is the Geometric Collabora-
tive Evolutionary (GCE) model proposed in [2]. In this model, the population
has a geometrical structure given by the circular placement of individuals on
layers according to their fitness. Furthermore, the agent-inspired component
of GCE leads to the collaboration of individuals which facilitates selection and
recombination. The search process is asynchronous allowing the improvement
and replacement of individuals within the same generation. The three main
strategies for recombination are supported by three co-evolving and dynamic
subpopulations or societies of individuals (i.e. local, far and global) having
different policies for mate selection and recombination. Population dynam-
ics emerges through the recombination of individuals from different societies
and a dominance principle. Co-evolution of societies enables a useful balance
between search diversification and intensification. Some individuals are spe-
cialized for local search facilitating exploitation while other individuals focus
on global search. The GCE model reports promising results for various dif-
ficult unimodal and multimodal real-valued functions with many dimensions
[2, 5] and for the problem of evolving Cellular Automata rules [3] in which the
real and, respectively, binary representation have been used.

In the current paper, the GCE model is adapted for the application to
RCPSP based on the permutation representation. Computational experiments
are presented for RCPSP based on several project instances and the results of
the RCPSP-customized GCE algorithm are compared to that of a standard
evolutionary algorithm.

The paper is organized as follows: Section 2 presents the RCPSP ad-
dressed in this paper, Sectiom 3 describes the GCE model, Section 4 presents
the GCE-based approach to RCPSP, Section 5 discusses the experimental re-
sults obtained and Section 6 contains the conclusions of the paper and some
directions for further research.

2. The Problem of Resource-Constrained Project Scheduling

RCPSP [1] considers a project with a set of activities and a set of available
resources. Let J be the number of activities (also called jobs) and {a1, ..., aJ}
the set of activities. Jobs have to follow certain precedence constraints which
means that a job can not start before all its predecessors are finished. Let
us denote by Pj the set of all predecessors of activity aj and by Sj the set
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of all its successors. The precedence constraints are usually represented as an
acyclic activity-on-node network. Two additional activities are also normally
considered: an initial activity a0, which must precede all other activities of
the project and a final activity aJ+1 which must be preceded by all activities
of the project.

In order to be executed, each activity requires a certain amount of some
of the available resources. Let K be the set of existing resources. In this
work, we only consider renewable resources - characterized by a constant per-
period-availability (Rk, for each k ∈ K). The amount of resource k needed by
the activity aj is denoted by rjk. Furthermore, each activity aj has a fixed
duration or processing time denoted by pj . It should be noted that the dummy
activities (a0 and aJ+1) require no time and no resources.

A schedule assigns a start time to all activities a1, a2..., aJ} with the prop-
erty that the end time of an activity aj is the sum of its start time and duration
pj . This makes the project makespan to be equal to the start time of the final
dummy activity aJ+1. A schedule is feasible if at any time the demand for
resource k does not exceed its availability:

∑
j rjk ≤ Rk.

The goal of RCPSP is to find a schedule of the activities with minimum
makespan taking into account the precedence and the resource constraints.

3. The Geometric Collaborative Evolutionary Model

The GCE model [2, 3, 5] integrates agent-based behavior into the evolution
of the population in order to facilitate the adaptation of individuals to the
environment as the search process progresses.

The population has a geometrical structure which allows the definition
of a neighborhood notion used in designing different selection strategies (see
Figure 1). Initially, all individuals are sorted according to their fitness and
distributed over concentric layers starting with the most fit individuals on the
most inner layers. The population size is fixed at n2 (where n is an even
number) which leads to a number of n/2 layers, each layer i (i = 0, ..., n/2−1)
having 4(n − 2i − 1) individuals. Let us denote the sorted population at
iteration t by P (t) = (x1, x2, ..., xn2), where x1 is the fittest and xn2 is the
worst individual in the population. The most inner layer contains the first four
individuals (x1, x2, x3, x4). The next layer holds 12 individuals (x5, ..., x16)
having the next best fitness values. The most outer layer is labeled by 0
whereas the label of the most inner layer is n/2 − 1. The example depicted
in Figure 1 uses a population of 82 individuals which leads to 28 individuals
being placed on layer 0 down to the best 4 individuals placed on layer 3.

Based on this population topology, local selection refers to individuals
situated on the immediately previous layer (better but still resembling fitness),
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Figure 1. GCE Population Topolgy and Society Strategies.

far selection seeks individuals from more distant layers (at least two layers
apart) containing more fit individuals while global selection considers the entire
population. The agent-inspired component of the GCE model refers to the
organization of the population in three societies of individuals co-evolving
during the search process. Each individual can be viewed as an agent with
the objective of optimising its fitness being able to communicate and select a
mate for recombination. Individuals belong to one the following three societies:
Local Correlation (LC), Far Correlation (FC) and Global Correlation (GC).

The GCE model uses an asynchronous search scheme. Individuals from
a layer are updated through recombination and are involved in forthcoming
recombination processes within the same generation. The individuals from
the most inner layer are automatically copied in the next population (as an
elitist strategy). Each individual from the population has the chance of being
improved by getting involved in a recombination process.

Recombination in the GCE model is guided by the following strategies
corresponding to each of the three agent societies (see Figure 1):

• LC individuals from a layer c address mating invitations to individuals
from layer (c+ 1), where c = 0, ..., n/2− 2.

• FC individuals from a layer c address mating invitations to individuals
from layer (c+i), where c = 0, ..., n/2−3 and i ≥ 2 is randomly selected
using a uniform distribution. FC individuals from layer (n/2−2) invite
individuals from layer (n/2− 1).

• GC individuals from a layer c may address mating invitations to indi-
viduals from any layer except layer c.

Furthermore, each individual invited to be a mate can accept or decline
the proposal according to its own strategy. Normally, individuals from LC
and FC societies accept individuals from the same society or from the GC
society as mates. Individuals from GC society accept any other individual as



80 ANCA ANDREICA, CAMELIA CHIRA

mate. Offspring are assigned to a certain society according to a dominance
concept. If LC is the dominant agent society then any combination of a GC
individual with a LC individual results in an offspring belonging to LC.

A probability of one society dominating another is used to modulate the
interactions between individuals belonging to different societies. Let p be the
probability of LC (and FC ) dominating GC. The dominance probability p
may be viewed as the (probabilistic) membership degree of an offspring to
the society LC (FC ) when one of the parents is a GC individual. Several
assignment schemes for p are analysed in [5] focusing on the dynamics given
by the co-existence of the three societies of individuals.

For each mating pair (x, y) the offspring z obtained after recombination is
mutated obtaining mut(z). The best between z and mut(z) is compared to the
first parent x and replaces x if it has a better quality. The elitist scheme that
allows only better individuals to replace the first parents is mitigated by the
fact that all individuals from the population are involved in recombination.

The importance of the agent-inspired component of GCE has been investi-
gated in [3] and the results support the hypothesis that an adaptive behavior
of individuals within an evolving population benefits the search process. This
adaptive behavior is triggered in the GCE model by the interactions between
individuals belonging to societies with different strategies for selection and
recombination.

4. Evolutionary Algorithm for RCPSP

The evolutionary approach to RCPSP developed in the current paper is
an instantiation of the GCE model. Therefore, the evolutionary algorithm
for RCPSP implements all GCE principles regarding the population topology,
the asynchronous search scheme and the LC, FC, GC societies of individuals.
This section focuses on specifying the individual representation, the crossover
scheme, the mutation operator and the fitness function used in GCE specifi-
cally for RCPSP.

The first thing to consider in an evolutionary algorithm for RCPSP is
how a solution of the problem is to be encoded in a chromosome. Several
different codifications for RCPSP have been proposed in the literature, among
which: activity list representation, random key representation, priority rule
representation, shift vector representation and schedule scheme representation.
This work focuses on the activity list representation: a solution of the problem
is encoded as a list of the activities which represent their execution order. If
an activity a2 appears after another activity a1 in the activity list, it means
that the start time of activity a2 is higher or equal to the start time of activity
a1: T (a1) ≤ T (a2). The list of activities must be precedence feasible i.e. each
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activity must have a higher index than any of its predecessors. An activity
list is translated into a schedule by assigning the smallest possible start time
to each activity [10]. This means that no activity can be left shifted without
violating the constraints.

The Uniform Crossover [4] operator is used for generating offspring in the
recombination process. The mutation operator used in the GCE approach to
RCPSP swaps two genes of a chromosome provided that the obtained per-
mutation still represents a feasible solution of the problem [4]. Mutation is
important in the evolutionary search process as it can lead to new individuals
that recombination is not able to obtain.

Finally, the fitness of an individual is defined as the makespan of the
corresponding schedule which should be minimized.

5. Computational Experiments and Results

The GCE algorithm is applied to several RCPSP instances and the results
are directly compared to a standard evolutionary algorithm (SEA). Both evo-
lutionary algorithms use a population size of 100, mutation rate of 0.05 and
100 generations of evolution. The initial population is randomly generated in
such a way that only feasible individuals are obtained. This is done in the fol-
lowing way: (i) the first chromosome gene is randomly selected from the entire
activities list, and (ii) next genes are randomly generated from the remaining
list of activities as long as all the predecessors of the chosen gene already exist
in the chromosome configuration obtained at that point.

In the standard evolutionary approach, roulette selection [4] is used for
choosing which individuals should enter the mating pool. The best individ-
ual obtained in one generation will always replace one randomly generated
individual from the next generation. This mechanism ensures that the best
individual obtained in the last generation is actually the best individual ob-
tained in all generations of the algorithm. The GCE model automatically has
access to the best individual each generation due to the specific population
geometry.

For testing the performance of the proposed model, several ProGen project
instances with 60 and 120 activities have been considered [9]. The results
obtained after 20 runs of the algorithms for each instance, presented in Table
1 and Table 2, are compaired using the paired t-test with a 95% confidence
interval. For the p-values smaller than 0.05 we can conclude that the mean
values obtained when using GCE are significantly smaller than those obtained
when using SEA. This situation appears for 7 out of the 10 considered project
instances with 60 activities and for all 10 considered project instances with
120 activities, even if their complexity is more significant. These test results
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indicate the acceleration of the search process when using the proposed GCE
model.

Table 1. Best and average makespan obtained after 10 runs
for each instance with 60 activities

GCE SEA T-test
Best Average Best Average p-value

J601 1 81 83.6 85 88 0.007454
J601 2 81 83.6 82 86.9 0.027292
J601 3 73 75.5 75 78.4 0.004937
J601 4 93 95.4 93 98.3 0.045599
J601 5 81 83.5 81 83.2 0.576312
J601 6 66 68.4 71 73.8 0.000067
J601 7 77 80.1 77 82.6 0.136332
J601 8 87 90 89 93.9 0.008539
J601 9 93 97.3 94 97.7 0.583877
J601 10 85 85.8 91 93.4 0.000002

Table 2. Best and average makespan obtained after 10 runs
for each instance with 120 activities

GCE SEA T-test
Best Average Best Average p-value

J1201 1 140 146.4 154 161.2 0.000296
J1201 2 141 147 150 157.7 0.001782
J1201 3 151 154 158 164.2 0.000560
J1201 4 123 128.7 135 139.1 0.000513
J1201 5 148 153.7 155 166.2 0.000265
J1201 6 105 110.8 116 123.1 0.000011
J1201 7 137 146.5 151 158.4 0.000027
J1201 8 140 150.1 156 160.9 0.000183
J1201 9 133 151.7 160 168.5 0.000718
J1201 10 146 152.2 160 164.7 0.000612

6. Conclusions and Future Work

A geometric collaborative evolutionary model is applied for solving the NP-
hard optimization problem of resource-constrained project scheduling. The
model is based on the geometric topology and the organization of individuals
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in different societies with different recombination strategies. The commu-
nication between individuals is facilitated by the agent inspired behaviour.
Numerical experiments performed on ProGen project instances with 60 and
120 activities emphasize a good performance of the geometric collaborative
model. As further work, comparisons with other evolutionary methods for
RCPSP will be performed.
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