
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 3, 2012

XML SCHEMA REFINEMENT THROUGH FORMAL

CONCEPT ANALYSIS

KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

Abstract. As XML becomes a popular data representation and exchange
format over the web, XML schema design has become an important re-
search area. Formal Concept Analysis (FCA) has been widely applied in
many fields recently. In this paper, we propose the application of FCA
to find functional dependencies (FDs) in XML databases. Our work is
based on the definitions of the Generalized Tree Tuple, XML functional
dependency and XML key notion presented by [22]. We propose a frame-
work which parses the XML document and constructs the Formal Context
corresponding to the flat representation of the XML data. The obtained
Conceptual Lattice is a useful graphical representation of the analyzed
XML document’s elements and their hierarchy. The software also finds
the keys and functional dependencies in XML data, which are attribute
implications in the constructed Formal Context. The scheme of the XML
document is transformed in GTT-XNF using the detected functional de-
pendencies.

Keywords and phrases: XML design, Formal Concept Analysis, XML Functional Depen-

dency, XML Normal Forms.

1. Introduction

In the last few years several papers discussed the relationship between
Formal Concept Analysis (FCA) and relational databases [8, 10]. Our ap-
proach intends to extend these results by reformulating the XML functional
dependency inference with an FCA viewpoint.

FCA is a mathematical theory of concept hierarchies which is based on
Lattice Theory. It is used as a technique for data analysis, knowledge repre-
sentation; it is a useful tool to represent knowledge contained in a database.

Designing XML data means to choose an appropriate XML schema, which
usually come in the form of DTD (Document Type Definition) or XML Scheme.
A big number of classical database subjects have been reexamined in the XML

Received by the editors: October 8, 2012.
2010 Mathematics Subject Classification. 68P15, 03G10.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

— Normal forms.

49

50 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

context [7, 1, 18, 17, 3] because XML became more and more popular. Dis-
covering XML data redundancies from the data itself becomes necessary and
it is an integral part of the schema refinement (or re-design) process.

Recently, there were several attempts to define XFDs (see [6, 16, 9, 19])
but in general, these approaches have different semantics regarding the tree
tuple and closest node XFDs and do not preserve the semantics of FDs when
relational data is mapped to XML via arbitrary nesting.

Functional dependencies (FDs) are a key factor in XML design. Our paper
proposes a framework to mine FDs from an XML database; it is based on the
notions of Generalized Tree Tuple, XML functional dependency and XML key
notion presented by [22]. Our contribution is the construction of the formal
context for a tuple class or the whole XML document. Non-leaf and leaf
level elements (or attributes) and corresponding values are inserted in the
formal context, then the concept lattice of the XML data is constructed too.
The obtained Conceptual Lattice is a useful graphical representation of the
analyzed XML document’s elements and their hierarchy. The software also
finds the keys in the XML document. The set of implications resulted from
this concept lattice will be equivalent to the set of functional dependencies
that hold in that database.

This paper is an extended version of the short conference paper that ap-
pears as [12]. The key additions to this journal paper are Section 2, which
discusses related work, Section 3 presents the necessary definitions of Func-
tional dependency for XML data and GTT-XNF normal form. In Section
4 it is explained in detail how these two techniques are combined to mine
functional dependencies. As a novelty of this article is the transformation
of a given XML Scheme to a scheme in GTT-XNF form. Finally, Section 5
summarizes the conclusions and future work.

2. Related work

The first authors who presented the problem of finding functional depen-
dencies in many-valued context were Ganter and Wille [8]. Different authors
[14, 15] use FCA concepts and methods like agree sets, maximal sets and closed
sets, which are closely related to the concept of closed sets and generators,
described previously, to avoiding the transformation of the original database.
The authors use these concepts to find efficient algorithms to extract functional
dependencies from a relational database. [4] studied the lattice characteriza-
tion and its properties for Armstrong and symmetric dependencies. Hereth
has already described the relationship between FCA and functional dependen-
cies in [10], he has introduced the formal context of functional dependencies.
In this context, implications hold for functional dependencies. The paper [11]

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 51

presents an FCA based approach to detect functional dependencies in a rela-
tional database table.

The first authors who formally defined XML FD and normal form (XNF)
were Arenas and Libkin introducing the so-called tree tuple approach [1]. In
[13] and [18], the authors used a path-based approach and built their XML FD
notion in a way similar to the XML Key notion proposed in [5].

Yu and Jagadish [22] show, that these XML FD notions are insufficient and
propose a Generalized Tree Tuple (GTT) based XML functional dependency
and key notion, which include particular redundancies involving set elements.
Based on these concepts, the GTT-XNF normal form is presented too.

In later work [2], Arenas and Libkin provided a formal justification for the
use of XNF in XML database design, using the classical information theory
approach. A measure of the information content of data (independent of
updates and queries) is introduced, as entropy of a suitably chosen probability
distribution. A formal definition of a well designed XML schema was given
and the fact that XNF is both a necessary and sufficient condition for an XML
schema to be well designed was proved.

Vincent et al. in [17] investigated the problem of justifying XML normal
forms [18], in the terms of closest node XFDs using redundancy elimination.
In [17], a normal form for XML documents is proposed and it has been proved
to be a necessary and sufficient condition for the elimination of redundancy.

3. Functional dependency for XML data

Arenas and Libkin introduced first the so-called tree tuple notion in [1],
they have defined functional dependency in XML data and XNF normal form
for XML. Redundancies in XML data have several distinct features due to the
heterogeneous nature of XML data, which makes them richer in semantics as
compared with redundancies in relational data. Yu and Jagadish [22] show,
that the XML FD notion introduced by [1] doesn’t include all possible features
of an XML document and propose a Generalized Tree Tuple (GTT) based
XML functional dependency and XML key notion, which include particular
redundancies involving set elements. They propose the GTT-XNF normal
form too based on these notions. As [22] we treat leaf level elements and
attributes in the same manner. The definitions of this section are based on
[22].

Definition 1. (Schema) A schema is defined as a set S = (E, T, r), where:

• E is a finite set of element labels;
• T is a finite set of element types, and each e ∈ E is associated with a
τ ∈ T , written as (e : τ), τ has the next form:
τ ::= str | int | float | SetOf τ | Rcd[e1 : τ1, . . . , en : τn];

52 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

• r ∈ E is the label of the root element, whose associated element type
can not be SetOf τ .

This definition contains some basic constructs in XML Scheme [20]. There
are a lot of other datatypes defined at [20], but it is not relevent for our
problem to enumarate them. Types str,int and float are the system defined
simple types and Rcd indicate complex scheme elements (elements with children
elements). Keyword SetOf is used to indicate set schema elements (elements
that can have multiple matching data elements sharing the same parent in the
data). We will treat attributes and elements in the same way, with a reserved
”@” symbol before attributes.

Figure 1. Example tree

The examples of this paper are based on XML tree of Figure 1.

Example 1. The scheme SUniversity of XML document from Figure 1 is:

University:Rcd

specialization:SetOf Rcd

SpecID: str

SpecName: str

Language: str

Student: SetOf Rcd

StudID: int

GroupID: str

StudName: str

Email:str

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 53

Studmark: SetOf Rcd

StudID: int

DiscID: str

Mark: int

DName: str

A schema element ek can be identified through a path expression, path(ek) =
/e1/e2/.../ek, where e1 = r, and ei is associated with type τi ::= Rcd [..., ei+1 :
τi+1, ...] for all i ∈ [1, k − 1]. A path is repeatable, if ek is a set element. We
adopt XPath steps ”.” (self) and ”..” (parent) to form a relative path given
an anchor path.

Definition 2. (Data tree) An XML database is defined to be a rooted labeled
tree T = 〈N,P,V, nr〉, where:

• N is a set of labeled data nodes, each n ∈ N has a label e and a node
key that uniquely identifies it in T ;
• nr ∈ N is the root node;
• P is a set of parent-child edges, there is exactly one p = (n′, n) in P for

each n ∈ N (except nr), where n′ ∈ N,n 6= n′, n′ is called the parent
node, n is called the child node;
• V is a set of value assignments, there is exactly one v = (n, s) in V for

each leaf node n ∈ N , where s is a value of simple type.

We assign a node key, referred to as @key, to each data node in the data
tree in a pre-order traversal. A data element nk is a descendant of another data
element n1 if there exists a series of data elements ni, such that (ni, ni+1) ∈ P
for all i ∈ [1, k−1]. Data element nk can be addressed using a path expression,
path(nk) = /e1/ . . . /ek, where ei is the label of ni for each i ∈ [1, k], n1 = nr,
and (ni, ni+1) ∈ P for all i ∈ [1, k − 1].

A data element nk is called repeatable if ek corresponds to a set element
in the schema. Element nk is called a direct descendant of element na, if nk
is a descendant of na, path(nk) = . . . /ea/e1/ . . . /ek−1/ek, and ei is not a set
element for any i ∈ [1, k − 1].

In considering data redundancy, it is important to determine the equality
between the ”values” associated with two data elements, instead of comparing
their ”identities” which is represented by @key. So, we have:

Definition 3. (Element-value equality) Two data elements n1 of T1 = 〈N1,P1,
V1, nr1〉 and n2 of T2 = 〈N2,P2,V2, nr2〉 are element-value equal (written as
n1 =ev n2) if and only if:

• n1 and n2 both exist and have the same label;

54 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

• There exists a set M , such that for every pair (n′1, n
′
2) ∈M , n′1 =ev n

′
2,

where n′1, n
′
2 are children elements of n1, n2, respectively. Every child

element of n1 or n2 appears in exactly one pair in M .
• (n1, s) ∈ V1 if and only if (n2, s) ∈ V2,where s is a simple value.

Definition 4. (Path-value equality) Two data element paths p1 on T1 =
〈N1,P1,V1, nr1〉 and p2 on T2 = 〈N2,P2,V2, nr2〉 are path-value equal (written
as T1.p1 =pv T2.p2) if and only if there is a set M ′ of matching pairs where

• For each pair m′ = (n1, n2) in M ′, n1 ∈ N1, n2 ∈ N2, path(n1) = p1,
path(n2) = p2, and n1 =ev n2;
• All data elements with path p1 in T1 and path p2 in T2 participate in
M ′, and each such data element participates in only one such pair.

The definition of functional dependency in XML data needs the definition
of so called Generalized Tree Tuple.

Definition 5. (Generalized tree tuple) A generalized tree tuple of data tree
T = 〈N,P,V, nr〉, with regard to a particular data element np (called pivot
node), is a tree tTnp

= 〈N t,Pt,Vt, nr〉, where:

• N t ⊆ N is the set of nodes, np ∈ N t ;
• Pt ⊆ P is the set of parent-child edges;
• Vt ⊆ V is the set of value assignments;
• nr is the same root node in both tTnp

and T ;

• n ∈ N t if and only if: 1) n is a descendant or ancestor of np in T , or
2) n is a non-repeatable direct descendant of an ancestor of np in T ;
• (n1, n2) ∈ Pt if and only if n1 ∈ N t , n2 ∈ N t, (n1, n2) ∈ P;
• (n, s) ∈ Vt if and only if n ∈ N t, (n, s) ∈ V.

A generalized tree tuple is a data tree projected from the original data
tree. It has an extra parameter called a pivot node. In contrast with tree
tuple defined in [1], which separate sibling nodes with the same path at all
hierarchy levels, the generalized tree tuple separate sibling nodes with the
same path above the pivot node. See an example generalized tree tuple of tree
from Figure 1 in Figure 2. Based on the pivot node, generalized tree tuples
can be categorized into tuple classes:

Definition 6. (Tuple class) A tuple class CT
p of the data tree T is the set of

all generalized tree tuples tTn , where path(n) = p. Path p is called the pivot
path.

Definition 7. (XML FD) An XML FD is a triple 〈Cp, LHS,RHS〉, written
as LHS → RHS w.r.t. Cp, where Cp denotes a tuple class, LHS is a set of
paths (Pli , i = [1, n]) relative to p, and RHS is a single path (Pr) relative to
p.

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 55

Figure 2. Example tree tuple

An XML FD holds on a data tree T (or T satisfies an XML FD) if and
only if for any two generalized tree tuples t1, t2 ∈ Cp

- ∃i ∈ [1, n] , t1.Pli =⊥ or t2.Pli =⊥, or
- If ∀i ∈ [1, n], t1.Pli =pv t2.Pli , then t1.Pr 6=⊥, t2.Pr 6=⊥, t1.Pr =pv t2.Pr.

A null value, ⊥, results from a path that matches no node in the tuple, and
=pv is the path-value equality defined in Definition 4.

Example 2. (XML FD) In our running example whenever two disciplines
agree on DiscID values, they have the same DName. This can be formulated
as follows:

./DiscID → ./DName w.r.t CStudmark

Another example is:
./Student/GroupID → ./SpecID w.r.t Cspecialization

In our approach we find the XML keys of a given XML document, so we
need the next definition:

Definition 8. (XML key) An XML Key of a data tree T is a pair 〈Cp, LHS〉,
where T satisfies the XML FD 〈Cp, LHS, ./@key〉.

56 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

Example 3. We have the XML FD: 〈CStudent, ./StudentID, ./Student@key〉,
which implies that 〈CStudent, ./StudentID〉 is an XML key.

Tuple classes with repeatable pivot paths are called essential tuple classes.

Definition 9. (Interesting XML FD) An XML FD 〈Cp, LHS,RHS〉 is inter-
esting if it satisfies the following conditions:

• RHS /∈ LHS;
• Cp is an essential tuple class;
• RHS matches to descendent(s) of the pivot node.

Definition 10. (XML data redundancy) A data tree T contains a redundancy
if and only if T satisfies an interesting XML FD 〈Cp, LHS,RHS〉, but does
not satisfy the XML Key 〈Cp, LHS〉.

4. Overview of the Approach

In this section we describe the methodology of a general approach to use
FCA to build tools that identify functional dependencies in XML documents.
To achieve this, as a first step, we need to define the objects and attributes of
interest and create models of XML in terms of FCA context. Our approach
is carried out by a sequence of processing steps. The output of each step
provides the input to the next step. Every step is illustrated with an example.
Our method is supported by a framework named FCAMineXFD. We will now
describe each processing step in detail.

4.1. Constructing the Formal Context, the Input to FCA. In this step
the most important issue is how to map the XML document to metamodel
entities. Our software can analyze the whole XML document or a tuple class
Cp given by the path p. Tuple-based XML FD notion proposed in the above
section suggests a natural technique for XFD discovery. XML data can be
converted into a fully unnested relation, a single relational table, and apply
existing FD discovery algorithms directly. Given an XML document, which
contains at the beginning the schema of the data, we create generalized tree
tuples from it.

Each tree tuple in a tuple class has the same structure, so it has the
same number of elements. We use the flat representation which converts the
generalized tree tuples into a flat table. Each row in the table corresponds to
a tree tuple in the XML tree. In the flat table there are non-leaf and leaf level
elements (or attributes) introduced from the tree.

For non-leaf level nodes the associated keys (see Section 3) are used as
values.

Applying our experience in detecting functional dependencies in relational
databases (see more details in [11]), we use the definitions introduced by

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 57

Hereth in [10]. Hereth gives the translation from the relational database into
a power context family and based on it he defines the formal context of func-
tional dependencies as follows:

Definition 11. Let
−→
K be a power context family, and let m ∈ Mk be an at-

tribute of the k-th context. Then, the formal context of functional dependencies

of m with regard to
−→
K is defined as FD

(
m,
−→
K
)

:=
(
mIk ×mIk , { 1, 2, ..., k}, J

)
with ((g, h) , i) ∈ J :⇔ πi (g) = πi (h) with g, h ∈ mIk and i ∈ { 1, 2, ..., k}.

The π is the relational algebra projection operation. In the next paragraph
we will see how we construct this formal context of functional dependencies.

In this step the formal context of functional dependencies for XML data
is built, mapping from metamodel entities to FCA objects and attributes.

• Choice of FCA Attributes: PathEnd/ElementName
Due to space considerations we will not specify the whole path to the

element (or attribute) names, only the end of the path. FCA attribute
names are built from the end of the path to the element: PathEnd and
element name as follows:

– for non-leaf level nodes the name of the attribute is constructed
as: <ElementName>+”@key” and its value will be the associated
key value as specified in Section 3. More elements, which have the
same path, will have the same attribute name, but the values will
be different.

– the leaves (actually not the values of the leaves, but the element
names of the leaves) of the tree tuple.

• Choice of Objects: the objects are considered to be the tree tuple pairs,
actually the tuple pairs of the flat table. The key values associated to
non-leaf elements and leaf element’s values are used in these tuple
pairs.
• Choice of Properties: the mapping between objects and attributes is

defined by a binary relation, this incidence relation of the context
shows which attributes of this tuple pairs have the same value.

The analyzed XML document may have a large number of tree tuples.
Creating the tree tuple pairs, our context table may have a very large number
of rows, therefore, we need to clear the concepts of irrelevant entities. We filter
the tuple pairs and we leave out those pairs in which there are no common
attributes, by an operation called ”clarifying the context”, which does not
alter the conceptual hierarchy.

Example 4. The beginning of the formal context of our running example
for tuple class Cspecialization can be seen in Figure 3. There are only a few

58 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

Figure 3. Beginning of the Formal Context of functional de-
pendencies for tuple class Cspecialization

columns of it in the image, due to space considerations. We can see the
attributes as column names, like Student/Student@key (for non-leaf element),
specialization/SpecName (for leaf element). Rows contain the tuple pairs, only
the beginning of them can be seen. If tuple pairs has the same value for an
attribute, then X appears in the context table. This file will be the input for
the next step.

4.2. Creating the Concept Lattice. Once the objects and attributes of
the context are defined, we run the Concept Explorer (ConExp) [21] engine
to generate the concepts and create the concept lattice. The main output
produced by FCA is the concept lattice.

Example 5. The concept lattice for the formal context of functional depen-
dencies for XML data constructed in previous step for tuple class Cspecialization

can be seen in Figure 4.

4.3. Processing the Output of FCA. A concept lattice consists of the
set of concepts of a formal context and the subconcept-superconcept relation
between the concepts, see [8]. Every circle in Figure 4 represents a formal
concept. Each concept is a tuple of a set of objects and a set of common
attributes, but only the attributes are listed. An edge connects two concepts
if one implies the other directly. Each link connecting two concepts represents
the transitive subconcept-superconcept relation between them. The top con-
cept has all formal objects in its extension. The bottom concept has all formal
attributes in its intension.

Example 6. In Figure 4 node labeled with Student/GroupID is on upward
path from node labeled by Student/StudID, Student/StudName, Student/
Student@key, Student/Email. In FCA language, concept with label Student/

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 59

Figure 4. Concept Lattice of functional dependencies’ Formal
Context for tuple class Cspecialization

StudID, Student/StudName, Student/Student@key, Student/Email im-
plies concept with label Student/GroupID.

4.4. Mining XFDs according to the concept hierarchy. In this step,
we examine the candidate concepts resulting from the previous steps and use
them to explore XFDs. Once the lattice is constructed, we can interpret each
concept and generate the list of all functional dependencies.

The relationship between FDs in databases and implications in FCA was
pointed out in [8]: a FD X → Y holds in a relation r over R iff the implication
X → Y holds in the context (G,R, I) where G = {(t1, t2)|t1, t2 ∈ r, t1 6= t2}
and ∀A ∈ R, (t1, t2)IA⇔ t1[A] = t2[A].

This means that objects of the context are couples of tuples and each
object intent is the agree set of this couple. Thus, the implications in this
lattice corresponds to functional dependencies in XML.

Example 7. Analyzing the Conceptual Lattice obtained for tuple class CStudent

(Figure 4) we can detect functional dependencies like:

60 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

〈CStudent, ./StudID, ./GroupID〉

〈CStudent, ./Student@key, ./GroupID〉

〈CStudent, ./StudName, ./GroupID〉

〈CStudent, ./Email, ./GroupID〉

In the lattice we list only the attributes, these are relevant for our analysis.
Let there be a concept, labeled by A,B and a second concept labeled by C. A,
B and C are FCA attributes. Let concept labeled by A,B be the subconcept
of concept labeled by C. Therefore tuple pairs of concept labeled by A,B
have the same values for attributes A, B, but for attribute C too. Tuple pairs
of concept labeled by C do not have the same values for attribute A, nor for
B, but have the same value for attribute C. Tuple pairs of every subconcept
of concept labeled by A,B have the same values for attributes A, B. The
labeling of the lattice is simplified by putting each attribute only once, at the
highest level. We analyze attributes A and B. If we have only A → B, then
A would be a subconcept of B. If only B → A holds then B should be a
subconcept of A. We have A→ B and B → A, that’s why they come side by
side in the lattice. So attributes from a concept imply each other.

Example 8. In concept node with label specialization/specialization@key,
specialization/SpecID, specialization/SpecName the associated objects are
tree tuple pairs, where the values for specialization/SpecID are the same. So
we have the next XML FDs:

〈Cspecialization, ./SpecID, ./SpecName〉

〈Cspecialization, ./SpecID, ./specialization@key〉

〈Cspecialization, ./specialization@key, ./SpecID〉

〈Cspecialization, ./specialization@key, ./SpecName〉

〈Cspecialization, ./SpecName, ./specialization@key〉

〈Cspecialization, ./SpecName, ./SpecID〉

Software FCAMineXFD found many functional dependencies. A part of
these XML FD-s are in Figure 5.

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 61

Figure 5. Some of the functional dependencies in tuple class Cspecialization

Example 9. In the concept lattice for the XML document of Example 1 we
can see the hierarchy of the analyzed data. The node labeled by specialization/
Language is on a higher level, than node labeled by specialization/SpecName.
The specialization node with three attributes is a subconcept of node labeled
specialization/Language. The Student node in XML is child of specialization
node. In the lattice, the node labeled with the key of Student, is subconcept
of specialization node, so the hierarchy is visible. These are 1:n relationships,
from Specialization to Group, from Group to Students, from Students to
Studmark.

62 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

Figure 6. The proposed new scheme of University XML data

The information about Disciplines is on the other side of the lattice.
Disciplines are in n:m relationship with Students, linked by Studmark node
in this case.

Therefore, we say that FCA can serve as a guideline for dependency min-
ing.

4.5. Finding XML keys. The implications found by FCAMineXFD contain
some FDs with RHS as ./@key values. These can be used to detect the keys
in XML.

Example 10. In tuple class CStudent we have XML FD: 〈CStudent, ./StudentID,
./Student@key〉, which implies that 〈CStudent, ./StudentID〉 is an XML key.

Example 11. Let us look at XML FD-s of Example 8. There are two FDs
with RHS as ./specialization@key in tuple class Cspecialization, so the detected
XML keys are: 〈Cspecialization, ./SpecID〉, 〈Cspecialization, ./SpecName〉.

4.6. Detecting XML data redundancy. Having the set of functional de-
pendencies for XML data in a tuple class, we can detect interesting functional
dependencies. In essential tuple class CStudmark, the XML FD 〈CStudmark,

XML SCHEMA REFINEMENT THROUGH FORMAL CONCEPT ANALYSIS 63

./DiscID, ./DName〉 found by the software in Figure 5 is an interesting FD,
but 〈CStudmark, ./DiscID〉 is not an XML key. So it is a data redundancy.

The same reason applies for XML FD 〈CStudmark, ./DName, ./DiscID〉.

4.7. Normalization. Given the set of dependencies discovered by our tool,
we adopt the normalization algorithm of [22] to convert one XML schema into
a correct one. See the resulting scheme in Figure 6.

5. Conclusion and Future Work

This paper introduces an approach for mining functional dependencies in
XML documents based on FCA. We proposed a framework to analyze XML
documents using Concept Analysis. Based on the flat representation of XML,
we constructed the concept lattice. We analyzed the resulted concepts, which
allowed us to discover a number of interesting dependencies. Our framework
offers an interactive visualization for dependency exploration. Taking in con-
sideration our preliminary results, we believe that FCA is a promising tech-
nique in XML database design too. We had also previously used FCA to
explore functional dependencies in relational databases, see more details in
[11]. In this paper, we complemented the information with XML design ex-
ploration.

Given the set of dependencies discovered by our tool, we propose a correct
XML schema. We have started to use our approach on several case studies.
We plan to develop our own FCA tool because Conexp is limited w.r.t. number
of rows in the formal context.

6. Acknowledgement.

The author Viorica Varga has been fully supported by Romanian Ministry
of Education in the frame Grant CNCSIS PCCE-55/2008.

References

[1] Arenas, M., Libkin, L.: A normal form for XML documents. TODS 29(1), pp. 195-232
(2004)

[2] Arenas, M., Libkin, L.: An information-theoretic approach to normal forms for relational
and XML data. JACM 52(2), pp. 246-283 (2005)

[3] Arenas, M., Libkin, L., Fan, W.: On the Complexity of Verifying Consistency of XML
Specifications. SIAM J. Comput. 38(3), pp. 841-880 (2008)

[4] Baixeries, J.: A formal concept analysis framework to mine functional dependencies.
Proceedings of Mathematical Methods for Learning (2004)

[5] Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C.: Keys for XML. In: Proc.
WWW, 201-210. Hong Kong, China (2001)

[6] Chen, Y., Davidson, S., Hara, C., Zheng, Y.: RRXS:redundancy reducing XML storage
in relations. In: VLDB, pp. 189-200 (2003)

64 KATALIN TUNDE JANOSI-RANCZ AND VIORICA VARGA

[7] Embley, D.W., Mok, W.Y.: Developing XML documents with guaranteed ”good” proper-
ties. In: ER 2001, 20th International Conference on Conceptual Modeling, pp. 426-441
(2001)

[8] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer
(1999)

[9] Hartmann, S.: Axiomatising functional dependencies for XML with frequencies. In:
FOIKS, pp. 159-178 (2006)

[10] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International
Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer
Verlag, pp. 62-76 (2002)

[11] Janosi Rancz, K.T., Varga, V., Puskas, J.: A Software Tool for Data Analysis Based
on Formal Concept Analysis. Studia Univ. Babeş-Bolyai, Informatica, 53, 2, pp. 67-78
(2008)

[12] Katalin Tunde Janosi-Rancz, Viorica Varga, and Timea Nagy: Detecting XML Func-
tional Dependencies through Formal Concept Analysis, 14th East European Conference
on Advances in Databases and Information Systems (ADBIS), Novi Sad, Serbia, LNCS
6295, pp. 595-598 (2010).

[13] Lee, M., Ling, T., Low, W.L.: Designing functional dependencies for XML. In: EDBT
Conference, pp. 124-141 (2002)

[14] Lopes, S., Petit, J-M., Lakhal, L.: Functional and approximate dependency mining:
database and FCA points of view. Special issue of Journal of Experimental and Theoretical
Artificial Intelligence (JETAI) on Concept Lattices for KDD, 14(2-3): pp. 93-114, Taylor
and Francis (2002)

[15] Lopes, S., Petit, J-M., Lakhal, L.: Efficient Discovery of Functional Dependencies
and Armstrong Relations. Proceedings of the 7th International Conference on Extending
Database Technology (EDBT), Konstanz, Germany (2000)

[16] Schewe, K.D.: Redundancy, dependencies and normal forms for XML databases, In:
ADC, pp. 7-16 (2005)

[17] Vincent, M. W., Liu, J., Mohania, M.: On the Equivalence between FDs in XML and
FDs in Relations. Acta Informatica 44(3-4), pp. 207-247 (2007)

[18] Vincent, M. W., Liu, J., Liu, C.: Strong functional dependencies and their application
to normal forms in XML. ACM TODS, 29(3): pp. 445-462 (2004)

[19] Wang, J.,Topor, R.: Removing XML data redundancies using functional and equality-
generating dependencies, In: ADC, pp. 65-74 (2005)

[20] W3C. XML Schema, http://www.w3.org/TR/xmlschema-0/ (2004)
[21] Serhiy Yevtushenko, A.: System of data analysis ”Concept Explorer”. (In Russian).

Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, Russia,
pp. 127-134 (2000)

[22] Yu, C., Jagadish, H. V.: XML schema refinement through redundancy detection and
normalization. VLDB J. 17(2): pp. 203-223 (2008)

Hungarian University of Transylvania, Tirgu Mures, Romania
E-mail address: tsuto@ms.sapientia.ro

Babes-Bolyai University, Cluj, Romania
E-mail address: ivarga@cs.ubbcluj.ro

