
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 3, 2012

UNIFORM SOLUTIONS FOR WEB SERVICES

FLORIAN BOIAN AND BEATA JANCSO

Abstract. Web Services became widely used in today’s software envi-
ronment. Almost every distributed software application needs at least one
Web Service to enhance its functionality. A distributed application can
be easily created by using the WSWrapper component. WSWrapper of-
fers a unique and uniform solution for Web Service implementation and
integration. An important component of WSWrapper called WSGenera-
tor is presented. WSGenerator provides a simple and easy to use solution
for Web Service proxy generation. The main advantage of this compo-
nent is the uniform and platform independent interface. For case studies
a simple Web Service named HugeIndexOfFiles is defined. This service
provides interfaces for the major Web Service types: XML-RPC, SOAP
and REST. For each variant the service is described using the standards:
XRDL, WSDL and WADL.

1. Introduction

The Web Service technology becomes an important component of todays
distributed software environment. This technology is so widely used because
of its ability to realize platform independent communication between the com-
ponents of a distributed application. Another important aspect to mention is
the fact that a Web Service can return the requested information in several
standardized formats (XML, JSON, HTML) which can be consumed by differ-
ent type of clients, such as: browser based clients, rich desktop applications,
and other business applications running on smart portable devices.

There are a couple of available solutions for Web Services. The majority
of these frameworks is platform dependent, and do not offer a unique and
uniform solution for all three major Web Service types: RPC [15] , SOAP
[12] and REST [10] . Because of the lack of a uniform Web Service solution,

Received by the editors: August 17, 2012.
2010 Mathematics Subject Classification. 68U35, 68M11, 68N30, 68N25.
1998 CR Categories and Descriptors. H.3.5 [Information Storage and Retrieval]:

Online Information Services – Web-based services.
Key words and phrases. Web Service, WSWrapper, WSGenerator, Formal description of

interfaces.

13

14 FLORIAN BOIAN AND BEATA JANCSO

a new solution called WSWrapper was created and presented in the papers
[1, 2, 3, 4, and 8].

The WSWrapper framework offers a unique and uniform solution for
creating Web Services for all the major Web Service types: XML-RPC ,
SOAP and REST . All in all, the system provides [1, 2] a unique set of
objects, regardless of the implementation language or customer service. In
order to implement a service, a user must perform the following actions:

• provide a set of classes, functions, or methods that is exported from
the service to be executed by the clients

• define an object WebService [2] passing the service address, name
and type (where type can be XML-RPC, SOAP or REST)

• define mappings for the service methods
• define actions to deploy the service

In order to implement a Web Service client, the user must perform the follow-
ing actions:

• define a WebServiceClient [2] object passing the service address,
name and type (where type can XML-RPC, SOAP or REST)

• invoke the “call” method passing the method to call, and the list of
parameters

WSWrapper was implemented in the following programming languages: Java ,
Python , PHP and C #.

The WSWrapper framework also offers a uniform solution for Web Service
proxy generation. This new component it is called WSGenerator [5] and
was added recently to the WSWrapper framework. Having a uniform Web
Service proxy generator library is usefully especially for applications which
use functionality supplied by several services. Using several libraries for proxy
generation is not ideal, and maintaining such an application could become a
nightmare. Also creating the proxy from scratch for each of the used Web
Services is not the best solution. WSGenerator was introduced because of
the lack of a uniform and platform independent, automated proxy generation
library. The intention of WSGenerator is to simplify the development phase
of a distributed application.

2. The WSGenerator component

The proxy generation component was added to the WSWrapper frame-
work with the intention to create a complete, platform independent, and uni-
form set of solutions for Web Services. This new component is called Web
Service Proxy Generator or WSGenerator .

UNIFORM SOLUTIONS FOR WEB SERVICES 15

WSGenerator provides to the end user a simple and easy to use tool
for generating client Web Service proxies. The proxy generation library of-
fers a unified set of solution [3] for all the three major Web Service types:
RPC, SOAP and REST. By using this component, generating a proxy for a
given service becomes an easy process. The Web Service specific details and
operations, including specific transformations remain hidden to the end-user.

At the moment WSGenerator provides solutions for generating client prox-
ies in the following popular programming languages: Java , C#, Python
and PHP . In the future, support for other programming languages will be
added.

The WSGenerator component can be used for generating a client proxy
for any Web Service, as long as the Web Service has a machine processable
service description file published. The service description file format depends
on the type of the Web Service. WSGenerator uses the service description file
formats shown in Table 1 for proxy generation.

Web Service type RPC SOAP REST
Format WSDL

XRDL
WSDL WADL

WSDL 2.0 HTTP binding ex-
tension

Table 1. Web Service description file formats

In practice not all the Web Services publish service description files. Espe-
cially Web Services of types RPC and REST do not have any description file.
As a consequence generating a proxy for RPC and REST services becomes
a real challenge. If the service description file is missing automatic proxy
generation becomes much more complicated than the manual proxy creation.

Generating a proxy for a given Web Service is a simple process and can
be characterized by the following steps:

• step1 : the end-user requests a proxy for service X
• step2 : WSGenerator generates a proxy for service X and returns it
to the end-user. The end user receives an executable file containing the
generated proxy. For example if the end user request the generation
of a proxy for a Java service, he will receive a .jar file.

WSGenerator performs the following actions for proxy generation:

• connects to service X
• reads the service description file
• generates the proxy for service X
• returns the generated proxy to the end user

16 FLORIAN BOIAN AND BEATA JANCSO

If there was any error during the proxy generation process, a corresponding
exception will be returned to the end-user.

At an abstract level the WSGenerator component can be defined by the
interface shown in Figure 1.

Figure 1. WSGenerator interface

The domain objects used by the WSGenerator interface are represented
in the diagram from Figure 2.

Figure 2. WSGenerator domain objects

At the moment the WSGenerator component uses only two domain ob-
jects: Service andWSType . The Service interface represents at an abstract
level a Web Service, and the WSType represents the type of the Web Ser-
vice. Currently the following three major Web Service types are supported:
XML-RPC , SOAP and REST . Besides these three Web Service types,

support for other types will be added in the future.
In some cases a Web Service might require some sort of authentication from

the client application. Therefore support for authentication will be added to
the next version of WsGenerator interface.

Using the WSGenerator an end-user can also generate a proxy for only
one or a few methods of a given Web Service. This feature can be useful when

UNIFORM SOLUTIONS FOR WEB SERVICES 17

the client application uses only one or a few methods of a given Web Service.
In such cases it makes more sense to include only the necessary methods in
the proxy, instead of including all public methods of the service.

3. Case study: HugeIndexOfFiles web services

In order to test the qualities and observe the possible issues of theWSWrap-
per framework and WSGenerator component a web service called HugeIn-
dexOfFiles was created.

The HugeIndexOfFiles web service indexes in databases some charac-
teristics of the files from various directories, archives, and hosts. The number
of indexed files can be very large, until tens of millions.

After the indexing has finished several information can be obtained. As
an example we mention the following:

• files whose name get a check pattern,
• duplicated files (possibly with different names)

The indexing database has three tables: head, files and archives, presented in
Figure 3.

Figure 3. HugeIndexOfFiles indexing database tables

The fields of the indexing database have the following meaning:

• line : line contains a statistical summary of the database content like:

Sat May 19 21:28:09 2012, db: flocopii.db, files: 412784, differentFiles: 221151,

filesInArchives: 5961658, hiddenFiles: 10958, roots: +f:/

• id : represents the primary key of the line from the table
• path: contains the URL of hosting machine and the path in the file
system of the file,

• name: is the name of the file,

18 FLORIAN BOIAN AND BEATA JANCSO

• type: represents the extension of the name (like .c, .pdf, .txt etc.),
• length: represents the size of the file in bytes,
• data: represents the creation date and time,
• hash : is a SHA1 hash of the contents of the file, in base64 represen-
tation,

• infile : is 0 if the file is not member of any archive file, or is the id of
the archive file member. If the file is member of more nested archives,
then infile will point to the largest from the archives member.

The public interface of the HugeIndexOfFiles is illustrated in Figure 4.

Figure 4. HugeIndexOfFiles interface

In some cases the indexing process can take several hours or even more
days. As a consequence the HugeIndexOfFiles has four pairs of methods:
one for the request, and one for the response. This policy was adopted in
order to obtain the service response asynchronously. In this way, the clients
will not be blocked until the service finished the indexing process. The service
maintains a pool of requests and a corresponding pool of responses. A request-
response pair will be removed only after the client had obtained the final
response.

As observed in Figure 4 the HugeIndexOfFiles interface methods uses
the following arguments:

• RequestId : is a long integer that uniquely identifies a request, it
is similar to the serialVersionUID used in the case of distributed
applications,

• filedb: contains the URL and absolute name of database,
• listDirs: contains a list of directories and has the form: DIR1, DIR2,. . . ,
DIRn. A directory has the following form: {+|0|-} URL Absolute-
path. The + prefix is used in order to find files in the archives. The 0
prefix is used to ignore the archives, and the – prefix is used to remove
files from a directory in the index.

UNIFORM SOLUTIONS FOR WEB SERVICES 19

• selectSqlPhrase : contains a valid SQL query

The main pair of methods of the HugeIndexOfFiles is: select and selectRe-
sult . The head method checks the database consistency. If the database is
in an inconsistent state, the head method transforms it so that the loss to be
minimal.

For creating a new database for a list of directories the create method can
be used. If the createResult or updateResult methods are invoked before
the create or update operations had finished, the service response will be
something like this:

6360000 files handled Sat May 19 21:14:54 2012

f:/Sticuri/BFMntfs2Go/01Compendiu.zip/01Compendiu/Echo.class

An example of a final response from createResponse and updateRe-
sponse is shown in Table 2.

createResponse updateResponse
412784 inserted files.
5961658 inserted files from
archives.
0 ignored files from -DIR’s.
Sat May 19 21:28:09 2012, db:
flocopii.db, files: 412784, differ-
entFiles: 221151, filesInArchives:
5961658, hiddenFiles: 10958,
roots: +f:/
create stop.
Time 613139 seconds.

186354 intact files.
0 intact files from archives.
5 created files.
18 created files from archives.
5 modified files.
7 deleted files.
0 deleted files from archives.
0 ignored files from -DIR’s.
Sat Apr 28 15:08:06 2012, db: rlf-
data.db, files: 186364, differentFiles:
99058, filesInArchives: 3522260, hid-
denFiles: 1351, roots: +d:/
update stop.
Time 3426 seconds.

Table 2. createResponse and updateResponse response example

The main components of the HugeIndexOfFiles web service are imple-
mented in the Python programming language. In order to test the qualities and
defects of the WSWrapper and WSGenerator three implementation of the
HugeIndexOfFiles were created using: XML-RPC , SOAP and REST .
Because a SOAP service will create by default a WSDL [13] document, in
the following paragraphs only the XRDL [16] and WADL [7] documents
of the HugeIndexOfFiles web service implementations are presented.

20 FLORIAN BOIAN AND BEATA JANCSO

In the case of the XML-RPC web service an XRDL document is created.
The XRDL file of the HugeIndexOfFiles is illustrated in Figure 5.

Figure 5. HugeIndexOfFiles XRDL document

In the case of the RESTful HugeIndexOfFiles web service the param-
eters filedb and id will be the last fields from the URI. The methods of the
service can be invoked as presented in the table shown in Table 3.

UNIFORM SOLUTIONS FOR WEB SERVICES 21

URI HTTP method HTTP body
http://address/create/{filedb} POST listDirs
http://address/update/{filedb} PUT listDirs?
http://address/head/{filedb} GET -
http://address/select/{filedb} PUT selectSqlPhrase
http://address/createResponse/{id} DELETE -
http://address/updateResponse/{id} DELETE -
http://address/headResponse/{id} DELETE -
http://address/selectResponse/{id} DELETE -

Table 3. HugeIndexOfFiles RESTful web service method invocation

The operations of the RESTful HugeIndexOfFiles web service are de-
scribed using aWADL [9] document. An excerpt from theWADL document
is presented in Figure 6.

4. Conclusions

The majority of the popular distributed software application uses one or
more Web Service supplied functionality. Manual creation of several client
proxies is not ideal. Also using several different libraries for automatic proxy
generation might not be a good solution.

The WSGenerator component offers a simple, easy to use, and unique
tool for Web client proxy generation. WSGenerator becomes a unique tool
because of its uniform interface and support for the most popular Web Ser-
vice types. The client proxy is created based on the service descriptor file of
the Web Service. If the service does not publish any service description file,
automatic proxy generation might be difficult or even impossible. This might
be an issue especially in the case of RPC and RESTful Web Services. As
a possible solution to this issue a service descriptor generator component will
be added to the WsGenerator tool. In order to preserve the unified interface
of WsGenerator the new component will provide solution for all Web Ser-
vice types. Besides this new component also support for authentication and
JSON-RPC [10] will be added in the future.

The HugeIndexOfFiles web service was created in order to test the
WSGenerator component. In order to create a uniform implementation for
the HugeIndexOfFiles web service the WSWrapper framework was used.
TheHugeIndexOfFiles service can be easily integreated into any application
by using the WSGenerator component.

22 FLORIAN BOIAN AND BEATA JANCSO

Figure 6. HugeIndexOfFiles WADL excerpt

References

[1] Boian F. M. Unification of Web Service Technologies, Proceedings “Zilele Academice
Clujene 2010 (ZAC2010)”, Ed.Presa Universitara Clujeana,Cluj 2010, ISSN2066-5768,
pp. 92-97

UNIFORM SOLUTIONS FOR WEB SERVICES 23

[2] Boian F.M. Chinces D, Ciupeiu D, Homorodean D, Jancso B, Ploscar A. WSWrapper
– A Universal Web service generator, Studia Univ. Babes-Bolyai, Volume LV, Number
4, 2010, pp. 59-69

[3] Boian F.M. Servicii web; modele, platforme, aplicaii. Ed. Albastr, Cluj, 2011, pp. 363-
369

[4] Boian F.M. An uniform approach to define and implement the web services; case studies
for indexing huge file systems, Proceedings “Zilele Academice Clujene 2012 (ZAC2012)”,
pp.1-6

[5] Jancso B. RESTful Web Services, Proceedings “Zilele Academice Clujene 2010
(ZAC2010)”, Ed.Presa Universitara Clujeana, Cluj 2010, ISSN2066-5768, pp.158-161

[6] Jancso B. Web Service proxy Generator, Proceedings “Zilele Academice Clujene 2012
(ZAC2012)”, pp.1-6

[7] Marc J. Hadley - Web Application Description Language, 2006
[8] Ploscar A. A Java Implementation for REST-style web service ,Proceedings “Zilele

Academice Clujene 2010 (ZAC2010)”, Ed.Presa Universitara Clujeana, Cluj 2010,
ISSN2066-5768,ZAC2010, pp.140-146

[9] Takase T. Makino S. Kawanaka S. Ueno C.F. Ryman A. Defini-
tion Languages for RESTful Web Services: WADL vs. WSDL 2.0.
http://www.ibm.com/developerworks/library/specification/ws-wadlwsdl/index.html

[10] *** JSON-RPC, http://json-rpc.org
[11] *** REST principles,

http://www.ics.uci.edu/∼fielding/pubs/dissertation/rest arch style.htm
[12] *** SOAP, http://www.w3.org/TR/soap
[13] *** WSDL, http://www.w3.org/TR/wsdl
[14] *** WSDL2.0 HTTP Binding Extension,

http://www.w3.org/TR/wsdl20-adjuncts/#http-binding
[15] XML-RPC, http://xmlrpc.scripting.com/spec.html
[16] XRDL, http://code.google.com/p/xrdl

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

E-mail address: florin@cs.ubbcluj.ro
E-mail address: bea.jancso@yahoo.com

