
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 3, 2012

BUILDING GRANULARITY IN HIGHLY ABSTRACT PARALLEL

COMPUTATION MODELS

VIRGINIA NICULESCU

Abstract. The purpose of this study is to investigate the necessity, the ex-

istence, or the possibility to introduce mechanisms for specifying and building

granularity into parallel computation models with high level of abstraction. If
such mechanisms exist in this kind of models they are very useful since they allow

a better evaluation of the performance, and finally an easier and more efficient

implementation.

1. Introduction

One key to attaining good parallel performance is choosing the right granularity
for the application. An important goal is to determine the right granularity for paral-
lel tasks. In parallel setting the need for a unifying parallel model or a set of models
is heightened by the greater demand for performance and the greater diversity among
machines. Parallel computation models with high degree of abstraction usually do
not have mechanisms for specifying and building granularity. If such mechanisms
could be introduced they are very useful since they allow a better evaluation of the
performance, and finally an easier implementation. From a practical point of view,
algorithms that allow an adjustment of the granularity are preferable. It is more real-
istic to assume that the number of available processors is limited. A model of parallel
computation, to be useful must address both issues: abstraction and effectiveness,
which are summarized in the following set of requirements: abstractness, software de-
velopment methodology, architecture independence, cost measures, no preferred scale
of granularity, efficiently implementable [10].

We intend to focus our analysis on the models with high level of abstraction and
to evaluate how the last two criteria are fulfilled. The possibility of improving this
kind of models based on granularity building is going to be analyzed.

Received by the editors: June 26, 2012.

2010 Mathematics Subject Classification. 68Q85 , 65Y20.
1998 CR Categories and Descriptors. D.1.3 [Programming Techniques]: Concurrent Pro-

gramming – Parallel programming; D.2.10 [Software Engineering]: Design – Methodologies.
Key words and phrases. parallel computation, models, granularity, performance, design,

abstraction.

3

4 VIRGINIA NICULESCU

2. Level of parallelism and granularity

In modern computers, parallelism appears at various levels both in hardware and
software. Levels of parallelism can also be based on the lumps of code (grain size)
that can be a potential candidate for parallelism. The main categories of the code
granularity for parallelism are described in Figure 1.

Figure 1. The main categories of the code granularity for parallelism.

The granularity is often related to how balanced the work load is between tasks.
While it is easier to balance the workload of a large number of smaller tasks, this may
cause too much parallel overhead in the form of communication, synchronization, etc.
Therefore, one can reduce parallel overhead by increasing the granularity - amount of
work - within each task by combining smaller tasks into a single task.
Cost improvement
The size of work in a single parallel task (granularity) of a multithreaded application
greatly affects its parallel performance. When decomposing an application for mul-
tithreading, one approach is to logically partition the problem into as many parallel
tasks as possible. Next step is to determine the necessary communication between
the parallel tasks. Since partitioning tasks, assigning the tasks to threads, and com-
municating (sharing) data between tasks are not free operations, one often needs to
agglomerate, or combine partitions, to overcome these overheads and achieve the most
efficient implementation. The agglomeration step is the process of determining the
best granularity for parallel tasks [4].

If we are able to specify and to build granularity from the first levels of design,
which are based on models with high degree of abstractions, then the chances to
obtain good improvements of the resulted costs increase very much. This is due to
the fact that the grain sizes are included in the models as parameters, and the best
values for the actual parameters could be computed based on the concrete values of
the target architecture.

3. Models of parallel computation

A model of parallel computation is an interface separating high-level properties
from low-level ones. The role of a model is to provide a single machine - an indepen-
dent, simplified target for the development and specification of programs. Unfortu-
nately parallel computing lacks a single universally accepted model, because parallel
architectures can vary drastically and because the performance of parallel algorithms
depends very much on the details of the architecture. More concretely, a model is

BUILDING GRANULARITY IN HIGHLY ABSTRACT PARALLEL COMPUTATION MODELS 5

an abstract machine providing certain operations to the programming level above
and requiring implementations for each of these operations on all of the architec-
tures below. It is designed to separate software-development concerns from effective
parallel-execution concerns and provides both abstraction and stability. Since a model
is just an abstract machine, models exist at many different levels of abstraction [10].

3.1. Parallel Programming Models Classification. Models could be classified
based on their order of abstraction, in the following categories [10]:

(1): Models that abstract from parallelism completely. Such models describe
only the purpose of a program and not how it is to achieve this purpose.
Software developers do not even need to know if the program they build will
execute in parallel. Such models are necessarily abstract and relatively simple,
since programs need to be no more complex than sequential ones.

(2): Models in which parallelism is made explicit, but decomposition of pro-
grams into threads is implicit (and hence so is mapping, communication, and
synchronization). In such models, software developers are aware that paral-
lelism will be used and must have expressed the potential for it in programs,
but they do not know how much parallelism will actually be applied at run-
time. Such models often require programs to express the maximal parallelism
present in the algorithm and then the implementation reduces that degree of
parallelism to fit the designated architecture, at the same time working out
the implications for mapping, communication, and synchronization.

(3): Models in which parallelism and decomposition must both be made explicit,
but mapping, communication, and synchronization are implicit.

(4): Models in which parallelism, decomposition, and mapping are explicit, but
communication and synchronization are implicit. .

(5): Models in which parallelism, decomposition, mapping, and communication
are explicit, but synchronization is implicit.

(6): Models in which everything is explicit. Here software developers must
specify all of the detail of the implementation.

Within each of these categories, we may distinguish models according to the program-
ming paradigm on which they are based on:

-: relational/logic models;
-: functional models;
-: imperative models;
-: object-oriented models;
-: bio-inspired models.

3.2. Models with high level of abstraction. This category of models abstract
from parallelism completely meaning that nothing related to parallelization is made
explicit so the specification of the parallelism is implicit. We have different models
in this category, some of them having a dynamic structure, and others using static
structure as a basis. We enumerate some of them:

: with Dynamic Structure
-: Higher-order Functional-Haskell, Concurrent Rewriting-OBJ, Maude

6 VIRGINIA NICULESCU

-: Interleaving-Unity
-: Implicit Logic Languages-PPP, AND/OR, REDUCE/OR, Opera, Palm,

concurrent constraint languages
-: Explicit Logic Languages-Concurrent Prolog, PARLOG, GHC, Delta-

Prolog, Strand MultiLisp
: with Static Structure

-: Algorithmic Skeletons-Cole, Darlington, P3L
-: Data Parallelism Using Loops-Fortran variants, Modula 3*
-: Data Parallelism on Types-pSETL, parallel sets, match and move, Gamma,

PEI, APL, MOA, Nial and AT
: with Static and Communication-Limited Structure

-: Homomorphic Skeletons-Bird-Meertens Formalism
-: Cellular Processing Languages-Cellang, Carpet, CDL, Ceprol
-: Data-Specific Skeletons-scan, multiprefix, paralations, dataparallel C,

NESL, CamlFlight

Since these models are so highly abstract the implementer’s job is very often
extremely difficult; the transformation, compilation, and run-time systems must infer
all of the structure of the eventual program. This means deciding:

(1) how the specified computation is to be achieved,
(2) dividing it into appropriately sized pieces for execution,
(3) mapping those pieces, and
(4) scheduling all of the communication and synchronization among them.

The second requirement is tightly connected with granularity.

Higher-order functional models. Higher-order functional models that use graph reduc-
tion for function evaluation uses parallelization for this reduction, so the granularity
of the probable resulted task is not an issue of the programmer.

A similar situation is encountered for models based on concurrent rewriting.

Logic models. The logic models exploit the fact that the resolution process of a logic
query contains many activities that can be performed in parallel. The main types
of inherent parallelism in logic programs are OR parallelism and AND parallelism.
OR parallelism is exploited by unifying a subgoal with the head of several clauses
in parallel. Implicit parallel logic languages provide automatic decomposition of the
execution tree of a logic program into a network of parallel threads. This is done by
the language support both by static analysis at compile time and at run-time.

Skeletons models. The algorithmic skeletons models are based on the orchestration
and synchronization of the parallel activities that are implicitly defined by the skeleton
patterns. Programmers do not have to specify the synchronizations between the
application’s sequential parts. The communication/data access patterns are known
in advance. Granularity could be an important issue for each skeleton that could be
composed, but not for the entire program that just composes these skeletons.

BUILDING GRANULARITY IN HIGHLY ABSTRACT PARALLEL COMPUTATION MODELS 7

BMF. In Bird-Meertens formalism (BMF) higher-order functions (functionals) cap-
ture, in an architecture-independent way, general idioms of parallel programming,
which can be composed for representing algorithms [9, 2, 5]. Two functional are use
intensively: map and reduce. The functional map is highly parallel since the com-
putation of f on different elements of the list can be done independently if enough
processors are available.

(1) map f [x1, x2, . . . , xn] = [f x1, f x2, . . . , f xn]

Tree-like parallelism is expressed by the functional red (for reduction) with a
binary associative operator ⊕:

(2) red (⊕) [x1, x2, . . . , xn] = x1 ⊕ x2 ⊕ · · · ⊕ xn

Reduction can be computed on a binary tree with ⊕ in the nodes. The time of
parallel computation depends on the depth of the tree, which is [log n] for an argument
list of length n.

Other functionals may be defined, but these two are the most important and the
most used.

Functions are composed in BMF by means of functional composition ◦, such that
(f ◦g) x = f (g x). Functional composition is associative and represents the sequential
execution order.

BMF expressions - and, therefore, also the programs specified by them - can be
manipulated by applying semantically sound rules of the formalism. Thus, we can em-
ploy BMF for formally reasoning about parallel programs in the design process. BMF
is a framework that facilitates transformation of a program into another equivalent
program. A simple example of BMF transformation is the map fusion law:

(3) map (f ◦ g) = map f ◦map g

If the sequential composition of two parallel steps on the right-hand side of Eq.
(3) is implemented via a synchronization barrier, which is often the case, then the
left-hand side of the equation is more efficient and should be preferred.

A very important skeleton in BMF is the homomorphism that reflects the divide-
and-conquer algorithms [2, 5].

The BMF programs usually reflect the unbounded parallelism. The functional
map, for example, has the time complexity equal to O(1) with a processor complexity
n (n is the list’s length). This leads to a very fine granularity which is not practical.

In order to transform BMF programs for bounded parallelism, we may introduce
the type [α]p of lists of length p, and affix functions defined on such lists with the
subscript p, e.g. mapp [5]. Partitioning of an arbitrary list into p sublists, called
blocks may be done by the distribution function:

(4) dist(p) : [α]→ [[α]]p

8 VIRGINIA NICULESCU

The following obvious equality relates distribution with its inverse, flattening: red(|)◦
dist(p) = id, where | means concatenation.

Using these, we obtain the following equality for the functional map:

(5) map f = flat ◦mapp (map f) ◦ dist(p)

where the function flat : [[α]]p → [α] transforms a list of sublists into a list by using
concatenation (flat = red(|)).

For reduction, the transformation for bounded parallelism is as it follows:

(6) red(⊕) = redp(⊕) ◦mapp (red(⊕)) ◦ dist(p)

We may consider that only the functions with subscription p will be distributed
over the processors. The others will be sequentially computed.

PARES. For the model PARES [8] we encountered a similar approach. Functions
and operators which represent programs are defined on special data structures (Pow-
erList, ParList, PList, PowerArray, etc) based on structural induction. Two impor-
tant constructor operators are used: tie (p|q) and zip (p\q), yielding, respectively, the
concatenation and interleaving of two similar lists.

Functions are defined based on the structural induction principle. For example,
the high order function map, which applies a scalar function to each element of a
PowerList is defined as follows:

(7)
map : (X → Z)× PowerList.X.n→ PowerList.Z.n
map.f. [a] = [f.a]
map.f. (p\q) = map.f.p \map.f.q or map.f. (p | q) = map.f.p |map.f.q

In order to increase granularity distribution functions are defined [7]; they depend
on the same operator (tie or zip) that the initial non-transformed function uses.

A transformation of a function to accept distributions means that granularity
could be increased for that function (program). The transformation for PowerList
funstions is based on the following theorem.

Theorem
Given

• a function f defined on PowerList.X.n as

(8) f.(u|v) = Φf (u, v),

where Φ is an operator defined based on scalar functions and extended oper-
ators on PowerLists.

• a corresponding distribution distrl.p, (p ≤ n), and
• a function fp – the bounded parallel function defined as

(9)
fp.(u|v) = Φfp

(u, v)
fp.[l] = [fs.l]
fs.u = f.u

then the following equality is true

(10) f = flat1 ◦ fp ◦ distl.p

BUILDING GRANULARITY IN HIGHLY ABSTRACT PARALLEL COMPUTATION MODELS 9

A similar theorem is proven for cyclic distributions, based on \ operator too. The
proof could be find in [7].

In BMF of lists the granularity analysis is done only for homomorphisms. Bounded
parallelism is discussed there only for concatenation operator (so only for linear dis-
tribution or block). The advantage of the PARES model is that we may use not only
the distributions based on concatenation operator, but also the cyclic distributions,
or combinations of distributions.

UNITY. UNITY (unbounded nondeterministic iterative transformations) [3] is both
a computational model and a proof system. UNITY model uses Interleaving approach
that derives from multiprogramming ideas in operating systems via models of con-
currency such as transition systems. If a computation can be expressed as a set of
subcomputations that commute, that means, it can be evaluated in any order and
repeatedly, then there is considerable freedom for the implementing system to decide
on the actual structure of the executing computation. It can be quite hard to express
a computation in this form, but it is made considerably easier by allowing each piece
of the computation to be protected by a guard, that is, a Boolean-valued expression.
Informally speaking, the semantics of a program in this form is that all the guards
are evaluated and one or more subprograms whose guards are true are then executed.
When they have completed, the whole process begins again. Guards could determine
the whole sequence of the computation, even sequentializing it by having guards of
the form step = i, but the intent of the model is rather to use the weakest guards.

A UNITY program consists of declaration of variables, specification of their initial
values, and a set of multiple-assignment statements. In each step of execution, some
assignment statement is selected nondeterministically and executed. For example, the
following program,

Program P
initially x = 0
assign x := a(x)[]x := b(x)[]x := c(x)

end {P}

consists of three assignments that are selected non-deterministically and executed.
The selection procedure obeys a fairness rule: every assignment is executed infinitely
often.

In order to initialize a matrix - U(n× n) - to unity matrix; three variants could
be used:

< [] i, j : 0 ≤ i < n ∧ 0 ≤ j < n :
U(i, j) := 0 if i 6= j ∼ 1 if i = j

>

or

< ‖ i, j : 0 ≤ i < n ∧ 0 ≤ j < n : U(i, j) := 0 >
[] < ‖ i : 0 ≤ i < n : U(i, i) := 1 >

or

10 VIRGINIA NICULESCU

< [] i : 0 ≤ i < n : U(i, i) := 1
[] < ‖ j : 0 ≤ j < n ∧ i 6= j : U(i, j) := 0 >
>

The first solution has n2 statements, one for each matrix element; the second
solution has two statements, and the third has n statements, one for each matrix row.

A mapping of a UNITY program expresses a way in which that program can
be executed on an architecture; such a mapping may transform the connector [] into
sequential or parallel composition [3].

A possible mapping onto a synchronous multiprocessor architecture that we may
define is based on the following steps:

: choose one statement based on a certain order;
: execute the components of a statement (multiple assignments); the componets

are executed in parallel by using the set of processors that are synchronized
before other statement starts.

In this case, the connector [] means sequential composition, and the granularity
analysis of the variants that initialize the unity matrix is the following:

: the first solution has the biggest granularity (nothing is executed in parallel);
: the second variant has fine granularity (two statements: the first with n2

components and the second with n components);
: the third has a medium granularity (n statements each with two sub-statements,

and the second sub-statement has n components).

If a mapping on an asynchronous architecture is considered then we have the
following steps:

: each statement is allocated to a processor, and
: a sequence of execution (control flow) is defined for each processor (if more

than one statement is allocated to a processor).

Statements allocated to different processors are executed in parallel. The compo-
nents of a statement could be executed in parallel by using a set of processes that are
synchronized before other statement starts. If we are able to transform the program
in such a way that the number of statements is equal to the number of processors,
then the granularity is perfect for the target architecture.

As we may see from the last variant for matrix initialization, a statement could
be defined as a multiple assignment or as a composed statement (being composed
from two or more sub-statements).

The granularity of a UNITY program can be adjusted by changing the way in
which the assignment components are organized in the same or in different assign-
ment statements. An important requirement is that a transformation like this has to
preserve the correctness.

So, we may conclude that even if this model is so highly abstract we may change
the granularity by interchanging the separation symbol [] with the symbol ‖, by
following some rules that preserve the result.

BUILDING GRANULARITY IN HIGHLY ABSTRACT PARALLEL COMPUTATION MODELS 11

4. Conclusions

A programming model provides a set of rules or relationships that defines the
meaning of a set of programming abstractions. These abstractions are manifested
in a programming language which is an instantiation of that programming model. A
primary objective is to allow reasoning about program meaning and correctness. Still,
since the main reason for using parallelism is achieving performance, cost evaluation
is also very important for a parallel computation model. Granularity is a factor that
could influence the cost in a great measure. The importance of building granular-
ity from the first stages of parallel programs development justifies the introduction
of some mechanisms for specifying granularity even in models with high degree of
abstraction.

For serial algorithms, the time complexity is expressed as a function of n – the
problem size. The time complexity of a parallel algorithm depends on the type of
computational model being used as well as on the number of available processors.
Therefore, when giving the time complexity of a parallel algorithm it is important to
give the maximum number of processors used by the algorithm as a function of the
problem size. This is referred to as the algorithm’s processor complexity.

The synthesis and analysis of a parallel algorithm can be carried out under the
assumption that the computational model consists of p processors only, where p ≥ 1
is a fixed integer. This is referred to as bounded parallelism. In contrast, unbounded
parallelism refers to the situation in which it is assumed that we have at our disposal
an unlimited number of processors. But the next question would be “how we may
distribute the work across these processors”. The answer is easy if the model allows
different granularity scales.

Parallel programs specified using a computational model with high degree of
abstraction usually reflect the unbounded parallelism, and so usually we have very
fine size of granularity. But, some of these models could be adjusted to accept any
scale of granularity. This represents an important advantage since based on this a
more accurate cost model could be defined, too.

From the above analysis we may conclude that for the models with high degree
of abstraction, which are based on domain decomposition we may define more easily
formal methods for building granularity. Another important thing is that these meth-
ods have to be formally defined in order to assure the correctness preservation; the
main reason of using models is to assure a software development method that assures
the correctness, since debugging is extremely difficult in parallel setting.

References

[1] R. Bird. Lectures on Constructive Functional Programming. In M. Broy editor, Constructive

Methods in Computing Science, NATO ASI Series F: Computer and Systems Sciences, Vol. 55,
pg. 151-216. Springer-Verlag, 1988.

[2] M. Cole. Parallel Programming with List Homomorphisms. Parallel Processing Letters, 5(2):191-
204, 1994.

[3] Chandy, K.M. AND Misra, J. Parallel Program Design: A Foundation. Addison-Wesley, Reading,
MA.1988.

[4] Foster, I. Designing and Building Parallel Programs, Addison-Wesley 1995.

12 VIRGINIA NICULESCU

[5] Gorlatch, S., Abstraction and Performance in the Design of Parallel Programs, CMPP’98 First
International Workshop on Constructive Methods for Parallel Programming, 1998.

[6] Misra, J.: PowerList: A structure for parallel recursion. ACM Transactions on Programming

Languages and Systems, Vol. 16 No.6 (1994) 1737-1767.
[7] Niculescu V., Data Distributions in PowerList Theory. Lecture Notes of Computer Science, Vol.

3722: Theoretical Aspects of Computing, Proceedings of ICTAC 2007, Springer-Verlag, 2007:

396-409.
[8] Niculescu, V. PARES - A Model for Parallel Recursive Programs, Romanian Journal of Infor-

mation Science and Technology (ROMJIST), Ed. Academiei Romane, Volume 14(2011), No. 2,

pp. 159-182, 2011.
[9] D.B. Skillicorn. Foundations of Parallel Programming. Cambridge University Press, 1994.

[10] Skillicorn, D.B. and Talia, D.: Models and Languages for Parallel Computation. ACM Computer
surveys, 30(2): 123-136, June 1998.

Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca

E-mail address: vniculescu@cs.ubbcluj.ro

