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ALGEBRAIC APPROACH TO IMPLEMENTING AN ATL
MODEL CHECKER

LAURA FLORENTINA STOICA AND FLORIAN MIRCEA BOIAN

ABSTRACT. The Alternating-Time Temporal Logic (ATL) is interpreted
over the game structures. An open system interacts with its environment
and its behavior depends on the state of the system as well as the behavior
of the environment. In this paper we will use an algebraic approach to im-
plement an ATL model checker. Our tool is implemented in client-server
paradigm: ATL Designer, the client tool, allows an interactive construc-
tion of concurrent game structures as a directed multi-graph and the ATL
Checker, the core of our tool, represents the server part and is published
as Web service. The ATL Checker includes an algebraic compiler imple-
mented with ANTLR (Another Tool for Language Recognition) support.
The main function of the Web service is to parse a given formula, find the
set of nodes in which the formula is satisfied and return the result to the
user.

1. INTRODUCTION

An open system is a system that interacts with its environment and whose
behaviour depends on the state of the system as well as the behaviour of the
environment. In order to construct models suitable for open systems, the
Alternating-time Temporal Logic (ATL) was defined [1].

A Computation Tree Logic (CTL) specification is interpreted over Kripke
structures, which provide a model for the computations of a closed system.
In a closed system the behaviour is completely determined by the state of
the system. In order to capture compositions of open systems, we present
an extension of CTL, the alternating-time temporal logic (ATL), which is
interpreted over game structures.

ATL extends CTL by replacing the path quantifiers 3 (existential quan-
tification) and V (universal quantification) by cooperation modalities ((A)),
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where A is a team of agents. A formula ((A)) ¢ expresses that the team A
has a collective strategy to enforce .

ATL is a branching-time temporal logic that naturally describes compu-
tations of multi-agent system and multiplayer games. It offers selective quan-
tification over program-paths that are possible outcomes of games [1]. ATL
uses alternating-time formulas to construct model-checkers in order to address
problems such as receptiveness, realizability, and controllability.

Model checking is a technology used for verification and validation of au-
tomated system.

Over structures without fairness constraints, the model-checking complex-
ity of ATL is linear in the size of the game structure and length of the formula,
and the symbolic model-checking algorithm for CTL [2] extends with few mod-
ifications to ATL.

In the following the ATL language is defined. The operator scheme ¥,y is
defined as a triple (Suy, Ouu, 0q) Where set Sgy contains the representations
of the ATL formulas, Oy = {—,V, A, —,0,0,0,U} is the set of operators,
and the o4y : Ouy — S;y; X San is a function which defines the signature
of the operators. The ¢ ('future’), o ('next’), O (Calways’), and U (‘until’)
are temporal operators. The ATL model checker can be defined as the X, -
language [4] given in the form Lgy = (Semau, Synau, Lo : Semay — Synau)
where Syngy is the word algebra of the operator scheme Y,;; generated by
the operations from Ogy and a finite set of variables, representing atomic
propositions, denoted by AP. Semgy represents ATL semantic algebra defined
over the set of ATL formulas which are satisfied by the ATL model. £, is
a mapping which associates the set of satisfied formulas from Semgy to ATL
expressions from Syngy which satisfy these formulas.

Having well-defined ATL language, implementation of an ATL model checker
will be equated with an algebraic compiler which translates an ATL formula
of the ATL model to set of nodes over which that formula is satisfied.

We have chosen an algebraic approach to implement the ATL symbolic
model checking algorithm and we used a Web services technology to make our
model checker tool available to various clients. We provide as part of our tool
an example of GUI Client for the Web service.

The paper is organized as follows. In section 2 we present the definition
of the concurrent game structure with its syntax and semantics. In section
3 is presented the implementation of an algebraic compiler used by our tool
to verify satisfiability of ATL formulas for given models. Invocation of the
compiler will be accomplished through a Web service described in section 4.
In section 5 we test our new model checking tool on a simple ATL model.
Conclusions are presented in section 6.

2. ATL LOGIC WITH ITS SYNTAX AND SEMANTICS

Alternating-time Temporal Logic (ATL) is a branching-time temporal logic
that naturally describes computations of multi-agent system and multiplayer
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games. It offers selective quantification over program-paths that are possible
outcomes of games [1].

Concurrent game structures can be used to model compositions of open
systems. Unlike in Kripke structures, in a concurrent game structure, the
environment is involved in a state transition. The environment is modelled by
a set of agents. Each agent may perform some actions and at least one action
is available to the agent at each state.

The concurrent game structure in [1] is defined as a tuple S = (k, Q,II, 7, d, J)
with the following components:

e A natural number k > 1 of players. We identify the players with
numbers 1, ..., k.

e A finite set Q of states.

e A finite set II of propositions (also called observables).

e For each state ¢ € @, a set 7(¢q) C II of propositions true at q. The
function m is called labelling (or observation) function.

e For each player a € {1,....,k} and each state ¢ € Q, we identify
the moves of player a at state ¢ with the numbers 1, ..., d,(q), where
do(q) > 1 represents the number of available moves. For each state
q € Q, a move vector at q is a tuple (j1, ..., jr) such that 1 < j, < da(q)
for each player a. Given a state ¢ € @, we write D(q) for the set
{1,....di(q)} x ... x {1,...,dk(q)} of moves vector. The function D is
called mowve function.

e For each state ¢ € @ and each move vector (j1, ..., ji) € D(q), 6(q, j1, .-, Jk)
€ (@ represents the state that results from state ¢ if every player
a € 1,...,k chooses a move j,. The function § is called the transi-
tion function.

For a computation starting at state g we refer to it as a g-computation.
For a computation A and a position 7 > 0, we use A[7] to denote the i-th state
of A, A[0,i] to denote the finite prefix qo,q1,...,q; of A and A[i, 00] to denote
the infinite suffix ¢;, ¢i+1, --., of A.

The syntazx of a temporal logic ATL is defined with respect to a finite set
IT of propositions and a finite set A = {1, ..., k} of players [1].

An ATL formula is one of the following:

(s1): p, for propositions p € II;

(s2): =, o1V 2, where ¢ and (¢;);_15 are ATL formulas;

(83): ((A))oep, ((A))Op, or ((A))p1Upa, where A C A is a set of players,
and ¢, (¢i);_73 are ATL formulas.

The operator (()) is a path quantifier, and o ('next’), O (‘always’), and U
('until’) are temporal operators.

A strategy for player a € A is a function f, : QT — N that maps every
nonempty finite state sequence A = qpq1...gn, 7 > 0, to a natural number such
that fo(\) € {1,...,du(qn)}. Thus, the strategy f, determines for every finite
prefix A of a computation a move f,(A) for player a in the last state of A.
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Given a set A C {1, ..., k} of players, a state ¢ € Q and a set Fiy = {fsla €
A} of strategies, one for each player in A, the outcome of Fj is defined to
be the set out(q, Fla) of q-computations that the players from A are enforcing
when they follow the strategies in F4. A computation A\ = qo, q1, g2, ... is in
out(q, Fa) if g0 = q and for all positions 7 > 0, there is a move vector (j, ..., jx)
such that j, = fa(A[0,4]) for all players a € A and 0(qi, j1, -, J&) = Gi+1 [1].

Formal definition of ATL semantics given in [1] is defined over a game
structure S = (k, Q, 11,7, d, ). We write S, q | ¢ to indicate that the state ¢
satisfies the formula ¢ in the structure S. When S is clear from the context,
we omit it and write ¢ = ¢.

The satisfaction relation = is defined for all states ¢ of S inductively as
follows:

q = p, for propositions p € I1, iff p € 7(q);

q =~ iff ¢ F ;

g1V iff g o1 or g g2

q = p1ANp2iff ¢ =1 and g = py;

q 1 — w2 iff ¢ =~ or g = o

q = ((A)) o p iff there exists a set F4 of strategies, one for each player
in A, such that for all computations A € out(q, Fa), we have A[1] &= ¢;
q = ((A))Ogp iff there exists a set F)4 of strategies, one for each player
in A, such that for all computations \ € out(q, F4), and all positions
i > 0 such that A[i] = ¢;

q = ((A))Oyp iff there exists a set F4 of strategies, one for each player
in A, such that for all computations A € out(q, F4), there exists a
position i > 0 such that A[i] = ¢;

q E ((A))p1Ugps iff there exists a set F4 of strategies, one for each
player in A, such that for all computations A € out(q, Fl4), there exists
a position ¢ > 0 such that A[i] = @2 and for all positions 0 < j < i, we
have A[j] = ¢1

3. JAVA IMPLEMENTATION OF ATL MODEL CHECKER

Our algebraic compiler C translates a formula ¢ of the ATL model to the
set of nodes @' over which formula ¢ is satisfied. That is, C(p) = Q" where
Q' ={q€Qlqg [ »}.

For the implementation of our algebraic compiler we choose the ANTLR
[3]. ANTLR is a compiler generator which takes as input a grammar - an
exact description of the source language, and generates a recognizer for the
language defined by the grammar.

The algebraic compiler C implements the following ATL symbolic model
checking algorithm given by [1]. We add three more symbolic operators
(A,—, Q) in the ATL symbolic model checking algorithm to show all oper-
ators form Ogy.
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Function Eval4(p) as set of states C Q
case ¢ = p:
return [pl;
case p = —6:
return Q \ Eval 4 (0);
case ¢ = 01 V 0O2:
return Fval 4 (01) U Eval z(02);
case ¢ = 01 A O2:
return Eval4(601) N Eval 4(02);
case p = 01 — 02
return (Q \ Evala(01)) N Evala(62);
case ¢ = ((A)) 0 0:
return Pre(A, Eval 4(0));
case ¢ = ((A)0TH:
p:=Q;7:= Evala(0);70 :=T;
while p € 7 do

pi=T;

7 := Pre(A, p) N 7o;
wend
return p;

case @ = ((A))00:
p = 0;7 := Evala(0);
while 7 ¢ p do

pi=pUT;

7 := Pre(A, p) N Q;
wend
return p;

case p = ((A))01U0s:
p:=0;7:= Evaly(02); 70 := Evala(61);
while 7 ¢ p do

p=pUT;

7 := Pre(A, p) N 7o;
wend
return p;

End Function

The Pre(A, p) function, where A C A and p C @, returns the set of states
q such that from ¢, the players in A can cooperate and enforce the next state
to be in p. Pre(A, p) contains state ¢ € @ if for every player a € A there exists
a move j, € {1,...,da(q)} such that for all players b € A\ A whatever are their
moves we have 6(q, j1, ..., jk) € p.

In order to translate a formula ¢ of an ATL model to the set of nodes
Q' over which formula ¢ is satisfied, the attachment of specific actions to
grammatical constructions within specification grammar of ATL is necessary.

The actions are written in target language of the generated parser (in our
case, Java). These actions are incorporated in source code of the parser and
are activated whenever the parser recognizes a valid syntactic construction in
the translated ATL formula. In case of the algebraic compiler C, the actions
define the semantics of the ATL model checker, i.e., the implementation of the
ATL operators.

The model checker generated by ANTLR from our specification grammar
of ATL, takes as input the concurrent game structure S and formula ¢, and



78 LAURA FLORENTINA STOICA AND FLORIAN MIRCEA BOIAN

provides as output the set Q' = {q € Q|q |E ¢} the set of states where the

formula ¢ is satisfied.
The corresponding action included in the ANTLR grammar of ATL lan-
guage for implementing the o operator is:

’<<A>>@’ f=formula
{

HashSet rez = Pre($f.set);

$set = rez;

trace("atlFormula",3);

printSet ("<<A>>Q@ " + $f.text,rez);
}

For o ATL operator in ANTLR we use the @ symbol.

The formula represents a term from a production of the ATL grammar,
and f, rez variables are sets used in internal implementation of the algebraic
compiler.

The Pre($f.set) is a function that returns the set of states rez such that
from each state of rez, the players in A can cooperate and enforce the next
state to be in the set of states in which the formula f is satisfied.

The algebraic compiler C translates formula f of the ATL model S to set
of nodes @’ over which formula f is satisfied. The implementation of the
algebraic compiler C is made in two steps. First, we need a syntactic parser to
verify the syntactic correctness of a formula f. Then, we should deal with the
semantics of the ATL language (Semgy ), respectively with the implementation
of the operators from set Ogy = {—,V, A, —,0,0,00,U}.

Writing a translator for certain language is difficult to be achieved, requir-
ing time and a considerable effort. Currently there are specialized tools which
generate most of necessary code beginning from a specification grammar of
the source language.

In figure 1 is represented the algebraic compiler implementation process,
based on our specification grammar of ATL language.

4. PUBLISHING THE ATL MODEL CHECKER AS A WEB SERVICE

Web Services, as a distributed application technology, simplifies interop-
erability between heterogeneous distributed systems. Clients can access Web
services regardless of the platform or operating system upon which the service
or the client is implemented [5]. In order to make available our implementation
of algebraic compiler as a reusable component of an ATL model checking tool,
we published it as a Web service. The Web service will receive from a client
the XML representation of an ATL model S and an ATL formula ¢. The
original form of the ATL model S is passed then to the algebraic compiler C
generated by ANTLR using our ATL extended grammar. For a syntactically
correct formula ¢, the compiler will return as result C(¢) = {q¢ € Qlq = ¢},
the set of states in which the formula is satisfied.
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FicURE 1. Algebraic compiler implementation

Obviously, the formula ¢ may contain syntactical errors. In order to notify
the client about these possible errors, we must override the default behavior
of the ANTLR error-handling.

The architecture of the ATL model checker Web Service is showed in figure
2.

Firewall

Model
NET Clhent serialized ATL Checker
from AL Web service

T
A 4

SOAPHTTP Maodel
= serialized
é ( into
Response: gl
Idodel
desenalized Translated @
from 3L
Algebraic
ATL Com\pller&’
model (ANTLR-
Java)

FIGURE 2. Architecture of the Web Service
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In conclusion, for a given ATL model and an ATL formula ¢, the Web
service will parse the formula and will return to client the set of states in
which the formula is satisfied if formula is syntactically correct, or a message
describing the error from an erroneous formula.

5. TESTING THE NEW ATL MODEL CHECKER TOOL

Consider a system with two processes, Pz and Py. The process Pz assigns
values to the Boolean variable . When z=false, then Pz can leave the value
of £ unchanged or change it in true. When z=true, then Px leaves the value
of  unchanged. The process Py assigns values to the Boolean variable y, in
the same way as the process Pxz.

We model the synchronous composition of two processes by the S, con-
current game structure, where Sy, = (k, Q,1I1,7,d, 6):

e k=2 (first player denoted process Px, second player denoted process

Py);

e Q={q,q,9,q93} — qo means x =y = false, g1 means x = true and
y = false, etc;

o I ="{z,y}:

m(q0) = 0, m(q1) = {z}, m(q2) = {y}, 7(g3) = {z, y};
d1(qo) = di(g2) = 2 (means in state gy and g2 move 1 of the first player
leaves the value of z unchanged, and move 2 changes the value of x);
di(q1) = di(g3) = 1 (means in states ¢; and g3 first player has only one
move, namely, to leave the value of z unchanged); d2(qo) = da(q1) =
2,d2(q2) = d2(g3) = 1;

e state go has four successors: 6(qo, 1,1) = qo,0(qo, 1,2) = g2,(q0,2,1) =

q1, 5(q07 27 2) = g3.

A concurrent game is played on a state space. Every player chooses a
move. The combination of choices determines a transition from the current
state to a successor state.

The model checking tool is based on a C Sharp GUI client who allows
interactive graphical development of the ATL models.

The model is sent as a XML document to the Web service, together with
the formula to be verified. The response from server is displayed in a separate
window, as we will see in the following section.

Given the ATL formula ¢ = ((A4)) o (z Ay) for game structure from figure
3 with A = {2}, the output of the model checker is Q" = {1,3}. From state ¢
if second player chooses the move 2 the next state is g3 whatever is the move
selected by the first player. From the state g for the move 1 of the second
player, the first player can choose the move 1. Thus the game remains in state
g2. For that reason the state 2 € Q.

The answer from the server is showed into separate windows.
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FIGURE 4. Invoking the algebraic compiler (Web service) from
the ATL Designer (client)

6. CONCLUSIONS

For a given ATL model (concurrent game structure) and an ATL formula,
the Web service will parse the formula and will return to client the set of
states in which the formula is satisfied if formula is syntactically correct, or a
message describing the error from an erroneous formula.

We built an ATL model checking tool, based on robust technologies (Java,
.NET) and well-known standards (XML, SOAP, HTTP).

As a great facility we mention the capability of interactive graphical spec-
ification of the ATL model, using the client tool (ATL Designer).
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