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AN INCREMENTAL APPROACH TO THE SET COVERING

PROBLEM

RADU D. GĂCEANU AND HORIA F. POP

Abstract. The set covering problem is a classical problem in computer
science and complexity theory and it serves as a model for many real-world
applications especially in the resource allocation area. In an environment
where the demands that need to be covered change over time, special meth-
ods are needed that adapt to such changes. We have developed an incre-
mental clustering algorithm in order to address the set covering problem.
The algorithm continuously considers new items to be clustered. When-
ever a new data item arrives it is encapsulated by an agent which will
autonomously decide to be included in a certain cluster in the attempt
to either maximize its cover or minimize the cost. We have introduced
the soft agent model in order to encapsulate this behaviour. Initial tests
suggest the potential of our approach.

1. Introduction

The Set Covering Problem (SCP) is a classical problem in computer science
and complexity theory and it serves as a model for many applications in the
real world like: facility location problem, airline crew scheduling, resource
allocation, assembly line balancing, vehicle routing, information retrieval etc.
Let us consider a set X and a family F of subsets of X such that every element
from X belongs to at least one subset from F . The set covering problem is
the problem of finding a minimum number of subsets from F (or subsets of
minimum cost) such that their union is the set X.

A straightforward solution is the greedy approximation algorithm [6]. This
method selects at each step a set from F that covers most of the still uncovered
elements. In [7] the set covering problem is addressed using an ant colony
optimization algorithm together with a new transition rule. The authors have
also used a look-ahead mechanism for constraint consistency checking such
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that new elements are added to the solution if they do not produce conflicts
with the next element to be chosen.

The set covering problem can be formulated as a clustering problem where
the within cluster sum of squared errors to be minimized corresponds to the
cost associated to a certain set covering that needs to be minimal. We have
developed an incremental clustering algorithm in order to address the set cov-
ering problem. The algorithm continuously considers new items to be clus-
tered. Whenever a new data item arrives it is encapsulated by an agent which
will autonomously decide to be included in a certain cluster in the attempt to
either maximize its cover or minimize the cost.

The rest of the paper is structured as follows. In Section 2 the related
work is presented. Section 3 contains the theoretical background. The pro-
posed model is described in Section 4. The advantages and drawbacks of the
approach together with some concluding remarks are presented in the closing
Section 6.

2. Related work

The set covering problem is NP-hard and it has been addressed in many
ways over time [10, 7, 5, 3, 2, 1]. A greedy approximation approach [6] is
a straightforward way to address this problem. This method selects at each
step a set from F that covers most of the still uncovered elements (where F
denotes a family of subsets of the given set X such that every element from
X belongs to at least one subset from F ).

In [3] the set covering problem is addressed using a genetic algorithm by
using an n-bit binary string as the chromosome structure, where n is the
number of columns from the SCP dataset. In order to mark that column i is
in the solution the ith bit is set to 1. The authors designed heuristic operators
that transform invalid solutions (obtained after applying genetic operators)
to valid ones. The binary tournament selection was chosen as the method
for parent selection and for crossover the authors propose a so-called fusion
operator taking into account both the structure and the relative fitnesses of
the parents. A variable mutation rate specified in [3] is used arguing that the
genetic algorithm is more effective. Computational experiments on a large
set of randomly generated problems show that the genetic algorithm based
approach is capable of producing high quality solutions.

In [2] the online version of SCP is considered. In the online version an
adversary gives elements to the algorithm one by one. Whenever a new element
is arriving, the algorithm has to cover it. The elements of X and the members
of F are known in advance to the algorithm, but the set X

′ ⊆ X of elements
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given by the adversary isn’t and the task is to minimize the total cost of the
sets chosen by the algorithm.

In [7] the set covering problem is addressed using an ant colony optimiza-
tion algorithm together with a new transition rule. The authors have also
used a look-ahead mechanism for constraint consistency checking such that
new elements are added to the solution if they do not produce conflicts with
the next element to be chosen.

In [1] a clustered variant of the SCP is defined. In the Clustered-SCP the
subsets are partitioned into k clusters and a fixed cost is associated to each
cluster. So the objective is to find a cover that minimizes the sum of subsets
costs plus the sum of fixed cluster costs.

In [11] the authors introduce a new class of set covering heuristics, based
on clustering techniques. They begin by partitioning the set of columns into
clusters based on some column similarity measure and then they select the
best column from each cluster. If the selected columns cover the set then
this cover is pruned and the search stops here. Otherwise the partitioning is
modified and the process is restarted. Experiments performed on randomly
generated test problems indicate promising results.

3. Theoretical background

In machine learning, clustering is an example of unsupervised learning be-
cause it does not rely on predefined classes and class-labelled training exam-
ples. So it could be said that clustering is a form of learning by observation,
rather than learning by examples. In data analysis, efforts have been con-
ducted on finding methods for efficient and effective cluster analysis in large
databases. The main requirements for a good clustering algorithm would be
the scalability of the method, its effectiveness for clustering complex shapes
and types of data, dealing with high-dimensional data, and handling mixed
numerical and categorical data in large databases.

There is a great variety of clustering algorithms to choose from each with
its own strengths and weaknesses. In [9] an incremental clustering algorithm
is presented. Incremental clustering algorithms in general do not rely on the
in-memory dataset and they build the solution gradually, with every new in-
coming data item. The idea behind is that it is possible to consider one
instance at a time and assign it to existing clusters without significantly af-
fecting the already existing structures. Only the cluster representations need
to be kept in memory so not the entire dataset and thus the space requirements
for such an algorithm are very small. Whenever a new instance is considered
an incremental clustering algorithm would basically try to assign it to one of
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the already exiting clusters. Such a process is not very complex and therefore
the time requirements for an incremental clustering algorithm are also small.

An agent is an entity that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors [12]. An
agent that always tries to optimize an appropriate performance measure is
called a rational agent. Such a definition of a rational agent is fairly general
and can include human agents (having eyes as sensors, hands as effectors),
robotic agents (having cameras as sensors, wheels as effectors), or software
agents (having a graphical user interface as sensor and as effector). Usually
agents coexist and interact forming Multi-agent Systems (MAS). In computer
science, a MAS is a system composed of several interacting agents, collectively
capable of reaching goals that are difficult to achieve by an individual agent
or monolithic system.

The set covering problem is a classical problem in computer science and
it serves as a model for many real world applications. Let us consider a set X
and a family of subsets of X

F = {S1, S2, . . . , Sn} .(1)

The classical set covering problem is the problem of finding a minimum car-
dinality J ⊆ {1, . . . , n} such that∪

j∈J
Sj = X.(2)

The minimum cost set covering problem considers a cost cj for each Sj

and the problem is to find a cover for X and to minimize the sum of costs∑
j∈J cj .

4. Incremental SCP

In our model the input is an m × n incidence matrix A, where m =| X |
and each column corresponds to a set Sj with j ∈ {1, . . . , n}. Each column
j has a corresponding cost cj > 0. We say that a column j covers a row i if
aij = 1. Let xj be a binary decision variable which has the value 1 if column
j is chosen and 0 otherwise. Then the set covering problem can be defined as
minimize (3) subject to (4) [7].

f(x) =

n∑
j=1

cjxj ,(3)



AN INCREMENTAL APPROACH TO THE SET COVERING PROBLEM 65

n∑
j=1

aijxj ≥ 1, ∀i = 1, n,(4)

Clustering can be seen as the problem of finding ”meaningful” groups in
data and a way to do this is by minimizing a certain objective function. The set
covering problem can be formulated as a clustering problem in the following
way: assign columns from A to clusters such that the function from (3) is
minimized and the cluster is valid, i.e., the relation (4) holds.

We have developed an incremental clustering algorithm in order to address
the set covering problem. The algorithm considers one instance at a time and
assigns it to one of the existing clusters without significantly affecting the
already existing structures. The algorithm continuously considers new items
to be clustered. Whenever a new data item arrives it is encapsulated by an
agent which will autonomously decide to join a certain cluster in the attempt
to either maximize the cluster cover or minimize its the cost. These two
objectives are rather conflicting and this brings a great deal of imprecision and
uncertainty in the whole reasoning process. That is why we have employed
soft agents in this matter. A soft agent is an intelligent agent that has to
deal with imprecision, uncertainty, partial truth and approximation during its
execution as a reactive agent or goal oriented agent or both.

Definition 4.1. A soft agent is a function which assigns actions to state-
reward pairs:
agent : (S × R)∗ → A,
where S represents the set of all possible states and A is the set of all possible
actions an agent may choose from.

So, roughly speaking, a soft agent chooses its next action based on its
previous experience, i.e., previous environment states and it receives a reward
r ∈ R as a result of this choice.

The interaction between the agent and the environment is thus a sequence
of environment state-reward pairs and actions:

h : (s0, r0)
a0−→ (s1, r1)

a1−→ . . .
au−1−−−→ (su, ru)(5)

We consider a state transformer function

env : S × R×A → P(S × R)(6)

in order to represent the effect of an agent’s actions over the environment.
According to this definition environments are assumed to be history de-

pendent. So the next state of an environment is determined by the action
performed by the agent in the current state of the environment, the reward
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and also by the earlier actions made by the agent. This behaviour is thus non-
deterministic. In other words, the result of performing an action in some state
is governed by uncertainty. Also we may notice that the agent’s behaviour
in this situation is highly reactive to the local changes in the environment.
However using only purely reactive agents is not always a fortunate choice
because they could easily get trapped in local minima. This is why soft agents
are designed to also act proactively, ensuring that they attempt to accomplish
what they are supposed to. Therefore in order to obtain an optimal perfor-
mance from an agent it should be able to find the proper balance between its
reactive and proactive behaviour.

The environment can be formally written as a triple

Env = ⟨S, (s0, r0), env⟩,(7)

where S is the set of environment states, s0 is the initial state, r0 is the initial
reward and env is the state transformer function.

Proposition 4.1. If agent : (S×R)∗ → A is an agent, env : S×R×A →
P(S×R) is an environment, s0 is the initial state and r0 is the initial reward
then the sequence:

h : (s0, r0)
a0−→ (s1, r1)

a1−→ . . .
au−1−−−→ (su, ru)(8)

is a possible history of the given agent in the given environment if and only if
the following conditions hold:

(1) ∀u ∈ N, au = agent(((s0, r0), (s1, r1), . . . , (su, ru)))
(2) ∀u ∈ N such that u > 0, (su, ru) ∈ env(su−1, ru−1, au−1)

The set of all such possible histories (8) will be denoted with H.
In order to specify the agent’s proactive behaviour a certain performance

measure needs to be specified and in the case of soft agents fitness functions
are associated to states of the environment. The agent has to maximize its
fitness. The fitness function is defined in the following way: F : H → R, where
H is the set of histories. So a fitness function associates a real value to every
history.

The task that an agent has to accomplish is to maximize its fitness so an
optimum is then reached for:

argmax
agent

∑
h∈H(agent,Env)

F (h)P (h|agent, Env),(9)

where P (h|agent, Env) denotes the probability that the history h occurs when
the agent is placed in environment Env.
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While the fitness function evaluates what is good on a long term, the
reward function evaluates the quality of a certain state. So the reward function
shows which would be the good and the bad actions to be taken from a certain
state. The reward function could be used to modify an agent’s policy π, i.e,
the agent’s behaviour. Thus the reward function is defined as Q : S ×A → R
and maps a real value, a reward, to a state-action pair.

For the set covering problem we define the fitness of an agent ai given a
cluster ck in the following way:

Definition 4.2. The fitness of an agent ai given a cluster ck is:

f(ai, ck) =
| rows(ai)− rows(ck) |

m
,(10)

where rows(ai) denotes the set of rows covered by agent ai, rows(ck) denotes
set of rows covered by cluster ck and m is the total number of rows.

The algorithm considers one column at a time and encapsulates it in an
agent. In the first part an initial valid cluster will be built using a greedy
approach (a cluster is valid if it covers the considered set). After this step
every newly considered agent will decide weather to try to maximize the cover
of one of the existing clusters or to minimize the cost using the following control
function: fλ(ai, ck). The parameter λ is initialized with 1 and is increasing
in time thus leading to agents that act upon minimizing the cost rather than
maximize the cover. A pseudo-code of the algorithm is sketched in Algorithm
1.

Algorithm 1 Incremental SCP

1: initialize parameters
2: find a proper cluster c0 by randomly selecting agents
3: C ← C ∪ {c0}
4: while condition() do
5: U ← U ∪ {createAgent()}
6: while U ̸= ∅ do
7: if reactive(ai) then
8: assign ai to a non-valid cluster ck or create a new cluster
9: else
10: {Sj , ck} ← tryReplace(ai)

11: U ← U ∪ Sj

12: end if
13: end while
14: U ← U ∪ discardWorseCluster()
15: update parameters
16: end while

The algorithm continuously receives new items (columns) to be clustered
and an agent encapsulates each item. The agent is placed in the collection U
of unclustered items. Starting from line 6 the algorithm repetitively considers
agents from the collection U . The agent decides to behave in a reactive or
proactive manner based on its control function. If it decides to behave reac-
tively, i.e., maximize the cover then the agent attempts to find a non-valid
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cluster to be included in. If no such cluster is found then a new cluster is cre-
ated containing this agent. The new cluster is added to C and ai is removed
from U . A cluster is valid if all the rows are covered (4). If on the other hand
the agent wants to minimize the cost then it will try to replace agents from a
valid cluster ck. If the replace operation took place then the set of replaced
agents Sj is added to the unclustered collection. After all agents from U have
been added to some clusters the cluster with the worse cost is discarded and
its agents are added to the unclustered collection. Parameters like λ or accept-
able cost threshold may be updated at this point. The λ parameter influences
at any moment the decision of behaving one way or another, i.e., maximizing
cover or minimizing the cost. It may be adaptively updated — when the solu-
tion stabilizes for a certain number of iterations, λ is reinitialized. The update
strategy of the λ parameter influences the efficiency of the algorithm. Future
work will focus on the study of fine tuning the λ parameter in order to find
the right balance between the two objectives. The whole process starts over
from line 4 and ends when some condition is met (like a good-enough solution
is found or a certain number of iterations have been completed).

5. Case studies

We have conducted experiments on five datasets from the OR − Library
[4]: scp410, scpa1, scpa2, scpa3, scpa4. The OR − Library is a collection
of test data sets for a variety of operation research (OR) problems, including
SCP. The scp410 dataset has 200 rows and 1000 columns in the following
format: number of rows (m), number of columns (n), the cost of each column
c(j), j = 1, . . . , n and then for each row i(i = 1, . . . ,m): the number of columns
which cover row i followed by a list of the columns which cover row i. The
other datasets (scp410, scpa1, scpa2, scpa3, scpa4) have 300 rows and 3000
columns and they use the the same format which was described above.

We have obtained near-optimum solutions as shown in Table 1 and in
Figure 2.

Reference [7] mentions that in case of the scp410 dataset the optimum cost
is 514 (see Table 1). After 5000 iterations we have obtained the cost 569. By
one iteration we mean the execution of the loop from line 4 of Algorithm 1.
At each iteration we read one new agent until all agents have been read. The
scp410 dataset may produce at most 1000 agents. At iteration 1000, i.e., by
the the time all agents are loaded we have already obtained the cost 774. So at
the beginning the algorithm finds good solutions fast. Unfortunately, in time,
it slows down in improving the cost and it only reaches near optimum solutions
(see Figure 1). Nevertheless, compared to the ACS [8] and ACS + FC [7]
algorithms we have obtained better results in case of the scp410 dataset.
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Dataset m n Opt AS ACS AS+FC ACS+FC IncSCP
scp410 200 1000 514 539 669 556 664 569
scpa1 300 3000 253 592 348 288 331 372
scpa2 300 3000 252 531 378 285 276 486
scpa3 300 3000 252 473 319 270 295 382
scpa4 300 3000 234 375 333 278 301 370

Table 1. m — number of rows (constraints); n — number of
columns (decision variables); Opt — the best known cost value
(taken from [7]); result when applying Ant algorithms, AS and
ACS, and combining them with forward checking (taken from
[7]); IncSCP — our result.

We have also obtained near optimum results in our tests on datasets scpa1
to scpa4, outperforming the AS [8] algorithm (see Table 1).

Comparative evaluation of the execution of our approach and the results
reported in [7] is shown in Figure 2. In the case of scp410 dataset we outper-
form the ACS [8] and ACS + FC [7] algorithms and in the scpa datasets we
outperform the AS [8] algorithm.

Figure 1. Comparative evaluation of algorithms for the
scp410 dataset.
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Figure 2. Comparative evaluation of algorithms on the con-
sidered datasets.

5.1. Discussion. We have addressed the set covering problem by using an
incremental clustering approach. Incremental methods are quite a novel topic
in cluster analysis research. They are essentially different from online and
offline learning methods. With offline learning the whole data set is assumed
available at all times, and with online learning the learning procedure becomes
iterative and considers one data item at a time in repetitive turns. On the
contrary, incremental learning procedures assume that at each time step the
decision is based on updating the data structures based on the data struc-
tures constructed at the previous time step and this approach should increase
robustness as compared with traditional learning methods.

In [2] the authors address the on-line version of SCP. In the online version
an adversary gives elements to the algorithm one by one. Whenever a new
element is arriving, the algorithm has to cover it. Even though it is on-line, this
approach is essentially different from the one considered in this paper since the
elements of X and the members of F are known in advance to the algorithm
while the set X

′ ⊆ X of elements given by the adversary isn’t and the task is
to minimize the total cost of the sets chosen by the algorithm. Even though
numerical experiments are not presented in the paper, the authors perform a
thorough complexity analysis of their algorithm.
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The set covering problem approach introduced in [7] uses an ant colony
optimization algorithm together with a new transition rule. In our initial ex-
periments performed on some of the datasets also used in [7] we have obtained
similar results as in [7] without managing to outperform their results in any
of the so far considered datasets. A careful analysis of our approach regarding
the fine tuning of the algorithm parameters is needed in order to improve the
obtained costs.

In [1] the authors define a clustered variant for the set covering problem.
This is different from our approach since in the Clustered-SCP the subsets are
partitioned into k clusters and a fixed cost is associated to each cluster. So the
objective is to find a cover that minimizes the sum of subsets costs plus the
sum of fixed cluster costs. In spite of not presenting numerical experiments in
the paper, the authors have performed in depth complexity analysis of their
approach.

In [11] the authors introduce a new class of set covering heuristics, based
on clustering techniques. They begin by partitioning the set of columns into
clusters based on some column similarity measure and then they select the
best column from each cluster. The authors have performed experiments on
randomly generated test problems and they indicate promising results. As
opposed to our approach, the method presented in [11] is not incremental.

There are a large number of examples suggesting that incremental learning
and reasoning are some of the intelligent methods most used by humans in their
real life. Such an example is speech recognition, where the listener recognizes
and understands the speech of the speaker in incremental steps, before actually
having the whole statement available. As well, when incrementally clustering,
humans have the ability to dynamically recognize that the extra data item
considered actually contributes to a local reorganization of the data clusters,
leading to, for instance, an increase or decrease in the total number of clusters.

6. Conclusions and future work

We have developed an incremental clustering algorithm in order to address
the set covering problem. The algorithm continuously considers new items to
be clustered. Whenever a new data item arrives it is encapsulated by an agent
which will autonomously decide to join a certain cluster in the attempt to
either maximize the cluster cover or minimize its the cost. We have used soft
agents in order to deal with the two conflicting objectives: maximize cover
and minimize cost. As in any approximation algorithm an optimal solution
is not guaranteed to be found, the purpose being to find reasonably good
solutions fast enough. Tests on other datasets from [4] are ongoing. We are
also investigating possibilities for speeding up the convergence. Ongoing tests
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suggest promising results and lead us to also consider similar problems like
the set partitioning problem.
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