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OPTIMIZATIONS IN PERLIN NOISE-GENERATED

PROCEDURAL TERRAIN

ALEXANDRU MARINESCU

Abstract. The following article wishes to be the first of a series focused
on different aspects involving procedural generation, with its ultimate goal
being that of building an entire realistic 3D world from a single number
(known in literature as the “seed”). It should allow for free exploration and
render at interactive frame rates on mid to high-end graphics hardware.
To begin with, we will discuss the manner in which we have generated
procedural landscapes and some techniques we have borrowed from ren-
dering algorithms in order to optimize the terrain generation and drawing
process. Regarding the rendering framework, we have gone for Microsoft
XNA Game Studio, the key factors of our choice being its simplicity plus
the fact that we can focus more on the structure and realization of the
algorithms and less on implementation and API details. As in our previ-
ous work [10], we have considered that this outweighs its limitations and
that the concepts presented here should very well fit any programming
language/drawing API.

1. About Procedural Generation

We feel it is our duty to first familiarize the reader with the field of proce-
dural generation which, surprisingly, pre-dates the era of computers. The idea
behind procedural generation is quite simple: what if we could take a complex
object (and in our context, by “object” we usually refer to textures, vertices,
polygons and meshes) and approximate it in a coarser or finer manner (de-
pending on needs and hardware) by a function or procedure. In other words,
when discussing procedural generation we must investigate to what extent it
is possible to parametrize an object [16, 15].
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Figure 1. Different parametrizations for a procedural ellipsoid.

To better understand this process of parameter refinement, one should
visualise a simple sphere. It is described by the coordinates of its centre in 3D
world space and its radius, with all the points which create the “shell” of the
sphere, (x, y, z) following the equation (x−xC)2 + (y− yC)2 + (z− zC)2 = R2.

This is what we call the Sphere(Centre, Radius) parametrization. However
simple it may seem, for the sphere to be drawn on the screen, the graphics
pipeline must be fed primitives (triangles). This means that we must take dis-
crete points (vertices) on the shell of the sphere, process which can return less
or more vertices, depending on the division step by which we discretized the
sphere. So now, apart from the centre and radius we have an extra parameter
– a step increment which, for larger and smaller values yields, respectively,
coarser and finer approximations of a sphere – the Sphere(Centre, Radius,
StepDivision) parametrization. Additionally, we can substitute different in-
crement values for the XY circle planes and for the Z axis, allowing for more
control over the final shape. We can associate an elongation factor to a cer-
tain direction, effectively turning the sphere into an more general ellipsoid
– Sphere(Centre, Radius, StepDivision, ElongationFactor, ElongationDirec-
tion). It is vital to notice that each new iteration is a generalization of the
previous, so we can still generate everything we could before, while at the
same time being able to provide new classes of objects (Figure 1).

At this point, the reader may already speculate that we can add an arbi-
trary number of parameters to our objects, each of them tweaking a different
aspect of the final outcome, but still one should keep in mind some important
aspects. The more parameters, the more control we have over the resulting
object, but a more complex parametrization usually comes at the expense of
speed and storage, since the resulting object needs to reside somewhere in
memory.

The philosophy behind procedural generation states that, for the same
combination of parameters we must have the exact same end result, making it
possibly one of the most efficient methods of data compression to date. This
turns it into an invaluable tool for game developers building extreme large
scale environments, where the use of art assets sculpted by 3D modellers is
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virtually impossible. Then again, this is the main reason why the authors have
chosen it for the task of building a large scale realistic environment. We list
here some sources of inspiration for our project: [1] – a free-roam racing game
set in a post-apocalyptic environment with the total land surface estimated
to an equivalent 14400km2, [3] – a galactic-scale god game with procedurally
generated animations for creatures the player can model at his own will, [4]
– a 96 kb FPS with all assets procedurally generated, from sound effects to
weapon models, and last but not least, the many demo groups that push the
limits of what can be done with a tiny amount of code – [2, 24]. The following
sections will present an overview of the perlin noise generation algorithm and
our attempt at implementing a synchronized CPU/GPU perlin noise generator
(or PNG) focusing afterwards on extracting terrain heightmap data from the
PNG.

2. Perlin Noise

Perlin noise is a type of gradient noise first developed by Ken Perlin in
1985 [17]. It relies on interpolating between the values of a lattice of random
gradients to produce hyper-textures of pseudo-random appearance. The in-
terpolant is usually a function having first and preferably second derivatives
at endpoints 0. In our case, we used the improved interpolant 6t5−15t4 +10t3

suggested by Ken Perlin in 2002 [18]. For further reading regarding the algo-
rithm itself, please refer to [19, 5, 22, 14, 6].

The essential fact for us is that perlin noise is an application from Rn to
R, that is, for each point in an n-dimensional hyperspace, PNG(x1, x2, ..., xn)
returns the evaluation of the perlin noise primitive in that point. Moreover,
the PNG is consistent, meaning that, if (x1, x2, ..., xn) = (y1, y2, ..., yn) then
PNG(x1, x2, ..., xn) = PNG(y1, y2, ..., yn), or the value returned by the perlin
noise generator for the same point in space is always the same. This makes it
very well suited to the context of procedural generation.

Because the PNG will be used extensively both by the CPU and the graph-
ics pipeline, we have attempted to create a hybrid PNG that produces “simi-
lar” results, for up to 4-dimensional coordinate space. We say similar, because
from a numerical point of view, the values evaluated in the same points by
the CPU and GPU will never coincide, owing to different architectural imple-
mentations [6]. Moreover, the results are not even the same between different
GPUs, but as we’ve stated before, we are interested in the visual appearance
of the generated hyper-texture. We have not gone beyond 4D space because
there was no interest for it in our application. Below one can find an outline
of the hybrid CPU/GPU PNG:

• Initialize a random number generator with a given seed;
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• Construct a 1D 256 permutation table containing a random permuta-
tion of the numbers 0 through 255;
• Construct a 2D 256*256 permutation table having 4 fields per element

containing all the possible combinations of 2 indexes taken 0 through
255 and then hashed using the previous permutation table (all opera-
tions being performed modulo 256):

∀i = 0, 255, ∀j = 0, 255

A = Permutation[i] + j, B = Permutation[i + 1] + j

Permutation2D[i, j].F ield1 = Permutation[A]

Permutation2D[i, j].F ield2 = Permutation[A + 1]

Permutation2D[i, j].F ield3 = Permutation[B]

Permutation2D[i, j].F ield4 = Permutation[B + 1]

(1)

• Construct hashed permutation tables for the static 1D, 2D, 3D and
4D gradients. At this moment we have all we need for the CPU side.
• Generate (only once per application since these do not change) 1D

textures coding the gradients using XNA’s NormalizedByte4 surface
format;
• Generate (every time the PNG is re-seeded) the 1D and 2D textures

containing the permutation tables using XNA’s Color surface format;
• Generate (again, with each re-seed) the 4 textures corresponding to

the hashed permutation tables using XNA’s NormalizedByte4 surface
format;
• Finally, feed these textures to the graphics pipeline each time a shader

utilizes procedural noise primitives.

The full documentation for the above mentioned surface formats and their use
cases can be found at the following resources: [12, 13, 11, 9].

The higher dimensionality of gradient noise is interpretable, for example,
2D noise yields a texture which can be applied on a model with UV texture
coordinates or used as a heightmap to generate 3D terrain (no folding of
terrain surface such as caves or archways). 3D noise can be used to texture a
3D model without UV texture coordinates, based solely on the coordinates of
its vertices, it can generate fully fledged 3D terrain, or it can be used to create
animated textures, such as fire (with time being the extra 3-rd dimension).
One can already realize why we have considered 4D noise sufficient for our
purposes. We have also brought our personal contribution to this area, by
fixing a minor bug in the HLSL implementation of 4D perlin noise from Nvidia
GPU Gems 3 [14] and finding an optimization for 4D noise which uses fewer
texture addresses and is consequently faster.
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Figure 2. The lack of precision of a classic heightmap is re-
sponsible for the rough aspect of the terrain.

3. 3D Terrain Generation

The first thing that usually comes to mind when building a 3D world is
the terrain. It is the basic support for other systems such as vegetation, water,
buildings and so on. There are a number of ways in which we can import the
terrain into our virtual reality application, heightmap-based generation being
by far the simplest [7, 8]. Terrain can also be modelled as a 3D mesh with
the use of 3rd party software, but this is out of the question for large scale
environments.

A heightmap is normally a 2D grayscale image for which each pixel stores
the height of the corresponding vertex (usually in the R channel). For example,
a 64*64 image will yield 4096 vertices, with the width and height dimensions
becoming X and Z coordinates respectively, possibly multiplied with some
scale factors afterwards. The greatest drawback of this approach is that the
color channels of the heightmap are very limited with respect to the range
of values they can store (256 discrete values per channel). Visually, this lack
of precision manifests itself as the “jagged” aspect of the terrain, which is
noticeable even for small differences in height for adjacent vertices (Figure 2).

In order to fix this issue, we have used the PNG which we have discussed
in the previous chapter to generate very smooth terrain. From an abstract
point of view, we have considered our world, albeit it being in 3D, as “sitting”
on a 2D lattice that extends infinitely on the X an Z axes in the XZ plane. All
lattice points have integer coordinates, and the square delimited by 4 points
will be denoted in our terminology as a “chunk”. As a consequence, we have
divided our “world” into chunks, each chunk being identified solely by the
integer coordinates of its upper left corner (Figure 3). This idea was inspired
by the manner in which [21] handles its large scale environment.

Afterwards we generate the actual terrain by splitting the intervals
(UpperLeftX , UpperLeftX + 1) and (UpperLeftY , UpperLeftY + 1) into a
desired number of subintervals. In our actual implementation we divided both
intervals to obtain a smaller lattice of 64 by 64 vertices whose height can now
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Figure 3. The lattice over which the 3D world resides.

Figure 4. Examples of procedural terrain obtained using var-
ious combinations of perlin noise primitives. For each vertex,
the normal component was computed based on the approach
from [7, 8] and the tangent/binormal frame was calculated us-
ing the algorithm from [25] in order to apply more advanced
lighting.

be determined by simply querying the value of the PNG at each given vertex
(we already know the X and Z coordinates). Remark that, because of the
properties of perlin noise and because we have split the 3D world in such a
manner, the resulting terrain will be seamless. One should experiment with
different combinations of noise primitives, visualize the outcome and try to
understand the behaviour of various compositions of noise functions (Figure
4).

4. Optimizations

At this point there is still a lot of room for improvement and this section
will present some of the steps we took in order to optimize the application,
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some of them targeting the algorithmic side whilst others address efficiency of
the rendering pipeline.

4.1. Architectural Robustness. We have already mentioned the chunking
mechanism for generating our procedural world: each chunk is an abstract
container, not only for terrain, but for everything that lies in that specific
sector of our virtual world. In order to keep this high level of decoupling be-
tween chunks, all that should be publicly available to them at any moment
must be only the PNG which is shared by the entire virtual world, and the
coordinates of the upper-left corner which uniquely identify it. Since there
are no cross-references between chunks, it is very easy to transition from sin-
gle to multi-threaded chunk generation. Chunks inherit from XNA’s Draw-
ableGameComponent base class, which allows them to behave as standalone
game components [23, 13, 11, 9]; when overriding the Update(GameTime)
and Draw(GameTime) methods we have added a boolean flag which specifies
whether the chunk is fully loaded and ready for rendering. If the world seed
does not change, the chunk data does not change, so it is not necessary to
generate the chunks with each run of the application. We have employed a
serialization/deserialization type mechanism for saving generated chunks and
loading those that have already been processed. Interesting enough, at this
early phase of the application it is cheaper to always re-generate everything
than to deserialize from disk, but it is expected that, as chunk data becomes
larger and procedural content generation becomes more computationally ex-
pensive, saving and loading data will benefit the application.

4.2. Tweaking the Rendering Process. Considering these aspects, the
virtual world becomes a collection of chunks. Notice that we do not need
to draw all chunks with the same level of detail. Of course, chunks that are
closer to the player camera must be drawn in higher detail than those fur-
ther away. If this were the case of terrain sculpted by an artist, it would be
quite difficult to obtain these different levels of detail, but with procedurally
generated terrain, we simply apply the algorithm of splitting the lattice into
smaller subintervals, but we will substitute a SkipFactor proportional to the
required level of detail. To further exemplify, remember we split at 64 dis-
crete points on each side; this would correspond to a SkipFactor of 1 and a
level of detail (LOD) of 0 – the highest detail. Now, imagine we need an
LOD of 1, this means a SkipFactor of 21 = 2 which would correspond to
the same lattice now split into 32*32 vertices. As the LOD increases, the
number of vertices continues to halve, until it reaches 4 – a single quad (we
cannot draw a single vertex). As a general rule, SkipFactor = 2LOD and thus
MaxLOD = log2 TerrainSize. Since we have access to the terrain vertices,
we can easily compute some auxiliary shapes that are extremely useful for
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hidden surface removal. First of all we can compute the centroid of all the
vertices for the terrain chunk data, which is done by taking their component-

wise arithmetic mean: G = 1
V ertexCount

V ertexCount∑
i=1

V ertexi. Moreover, we can

compute the BoundingBox and BoundingSphere surrounding the terrain as be-
ing the smallest box and respectively sphere that surround the entire chunk.
This enables us to perform a simple camera frustum containment check and
reject chunks outside the player’s view, which also allows for a simple form of
hardware occlusion query where the much lighter bounding boxes are drawn
instead of the entire geometry and fully occluded chunks are also rejected.

By using the centroid of the terrain as a coarse identifier for the chunk,
we can determine, based on the distance to the camera, which LOD to draw
for the terrain. In the actual implementation we have found that

(2) max(min(bDistanceToCamera

e ∗ TerrainDiagonal
c,MaxLOD), 0)

suits our purposes (where TerrainDiagonal is the diagonal of the terrain lattice
scaled to world units). Most GPUs have what is known as an early depth test,
meaning they can discard fragments from the pixel shader stage if another
object has already been drawn in front of them. This allows us to speed up the
rendering process by simply drawing closer (and presumably larger) chunks
first, which is also done by taking into account the distance to the player
camera. Furthermore, the GPU prefers drawing larger numbers of polygons in
a small number of Draw calls to drawing fewer polygons with a high count of
Draw invocations; it is best to gather the polygons from the furthest chunks
into a single batch to be sent to the graphics pipeline [6, 7, 8].

One could implement simplex noise instead of perlin noise, which was also
discovered by Ken Perlin later in 2001 [20] and has been proven to have a
much lower complexity (n2 compared to 2n where n is the dimensionality
of the noise function). Another useful aspect regarding generating chunks
on the fly is that we can attach a camera predictor to attempt to guess in
advance where the player might move next based on his previous actions and
invoke the procedural generation mechanism even before the player reaches
his destination.

5. Conclusions

In the closing chapter of this article we wish to point out our achievements
so far, these being the implementation of a hybrid CPU/GPU perlin noise
primitive generator and the realization of a large scale virtual world chunking
mechanism at an abstract level, with optimized procedural terrain generation,
having a pleasant visual appearance (Figure 5). Regarding the improvements
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Figure 5. Our application running at little over 500 FPS
1366*768 fullscreen, on an Intel Core i5-460M 2.53 GHz CPU
and Nvidia GeForce GTX 460M GPU system after all these
optimizations have been applied. The world consists of 100
chunks.

over a similar architecture from [21] we should mention that their respective
chunking system has voxels as the smallest unitary entity, effectively limiting
the engine to drawing volumes made up of cubes, whilst our implementation
allows for any type of surfaces/meshes. There have not been many attempts
in the gaming industry at creating huge outdoor environments mainly because
it is difficult to give the player a goal in such a world; ours has purely research
value. Also, a transition to the state-of-the-art DirectX 11 is probable in
the near future, and making use of its enhanced API and improved shader
capabilities would surely benefit our application, but we feel that there are
optimizations which can still be carried out in the older DirectX 9 version
supported by XNA.

Finally, we hope that our work has raised the reader’s interest on the
exciting subject that is procedural generation and we wish to provide some
directions for further development which we will also explore: the generation
of a procedural sky – star fields, real-time atmospheric scattering, cloud cover
formation, movement and dissipation, volumetric clouds; procedural vegeta-
tion (including aging of plants) and plant movement according to wind fields;
procedural texture generation for different types of materials. As our appli-
cation’s expenses grow larger we will investigate the possibility of offloading
all or some of the procedural computations to a dedicated server/web service.
With the ever-increasing communication bandwidth we consider this might be
feasible.
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