
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 2, 2012

A STUDY ON HIERARCHICAL CLUSTERING BASED

SOFTWARE RESTRUCTURING

ZSUZSANNA MARIAN

Abstract. Finding refactorings that can automatically improve the inter-
nal structure of a software system is continuously researched in the search
based software engineering literature. In this paper we will investigate
through a case study, whether the use of unsupervised learning methods
(hierarchical clustering) can be beneficial in the process of automatic refac-
toring identification. We will compare the results of two algorithms (one
that uses hierarchical clustering and one that does not) for a case study,
and show that the algorithm that uses hierarchical clustering is capable of
finding refactorings which are not found by the other algorithm.

1. Introduction

It is well-known that software system restructuring (also called refactor-
ing) is an important part both for the development and the maintenance of
software systems. During development, with the change of requirements or
with the addition of new features, refactoring might become necessary. Also,
refactoring is one of the steps in the Test-Driven Development cycle. During
the maintenance phase of the software life-cycle, refactoring can be used to
restructure the system in order to facilitate other maintenance activities, such
as improving performance or implementing new features.

Since nowadays most software systems are complex, containing many classes
with complicated relations between them, the field of automatic refactorings
identification gained importance. The development of new algorithms and
tools that are capable of finding a good restructuring of a software system is
an important research domain.

Received by the editors: April 10, 2012.
2010 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement - Restructuring, reverse engineering, and reengineering;
D.2.8 [Software Engineering]: Metrics - Product metrics; I.5.3 [Computing Method-
ologies]: Pattern Recognition - Clustering.

Key words and phrases. software refactoring, hierarchical clustering, software metrics.

20

A STUDY ON HIERARCHICAL CLUSTERING BASED SOFTWARE RESTRUCTURING21

In this paper we aim at investigating the usefulness of using unsupervised
learning for software restructuring. The case study we considered for evalu-
ation highlights the effectiveness of unsupervised learning models to uncover
hidden patterns in data.

The structure of this paper is the following: Section 2 presents a short
review of the existing literature. Section 3 presents the existing theoretical
background. Section 4 describes the HAC algorithm, a method that uses
unsupervised learning for software restructuring. Section 5 presents a case
study we used, and the results obtained for an existing algorithm (Subsection
5.1) and our unsupervised learning based algorithm (Subsection 5.2), together
with a comparative analysis of the results (Subsection 5.3). Section 5 ends
with the comparison of our algorithm to other existing algorithms from the
literature that use unsupervised learning (Subsection 5.4). Finally, Section 6
presents our conclusions and further research directions.

2. Literature review

In this section we aim at presenting other clustering based software re-
structuring methods that can be found in the literature.

One of the early works that examines the idea of using clustering for re-
verse engineering is [1]. It describes a series of experiments on how clustering
could be used for software remodularization by defining how an entity can be
represented, how to decide when two entities should belong to the same clus-
ters and how to apply a clustering algorithm to the entities. It is an important
study, many other papers that use clustering reference it, for example when
deciding what kind of linkage method to use.

A recent paper, [11], first identifies classes that have a low cohesion and
then finds Extract Class refactorings to divide the class into more cohesive
parts. In the first step, three software metrics are used (LCOM2, TCC and
DOCMA(AR)) to find classes with low cohesion, also called God classes. In
the second step, agglomerative clustering is used for the found classes, using as
a distance metric the Jaccard distance on property sets defined for attributes
and methods. The property set for an attribute is the attribute and the
methods that use it, while for a method it contains the method itself and the
methods and fields used by it.

Another paper that finds Extract Class refactorings is [5]. They use hier-
archical clustering for attributes and methods inside a class, using as distance
the Jaccard distance on entity sets. The entity set of an attribute contains
the attribute and the methods that access it, while the entity set of a method
contains the method itself, the methods invoked by it and the attributes used
by it.

22 ZSUZSANNA MARIAN

Unlike the above presented two methods, the HARS algorithm presented
in [4], is capable of finding many types of refactorings (Move Method, Move
Attribute, Inline Class and Extract Class). It considers as entity a method, a
class or an attribute, and defined a set of relevant properties, and a distance
metric between these sets. This method is similar to the one we will present
below.

3. Background

We have previously introduced in [10] an approach that uses software met-
rics for identifying an improved structure of a software system, i.e. a structure
that is likely to correspond to an improved design of it. In this section we will
give a brief overview of the vector space model (Subsection 3.1) and the ARI
algorithm (Subsection 3.2) introduced in [10].

3.1. The Vector Space Model. The main idea of this approach is to repre-
sent the components of a software system as a multidimensional vector, whose
elements are the values of different software metrics applied to the given com-
ponent. In order to give a formal definition, we considered that a software
system S is a set of components S = {s1, s2, ..., sn}, where si, 1 ≤ i ≤ n, can
be either an application class, or a method from an application class, and will
be called entity in the following.

Each entity from a software system is characterised in [10] by a list of
relevant features, which are the values for the following software metrics:

(1) Relevant Properties (RP) [3]
(2) Depth in Inheritance Tree (DIT) [2]
(3) Number of Children (NOC) [2]
(4) Fan-In (FI) [8] and [9]
(5) Fan-Out (FO) [8] and [9]

Using the above presented metrics, each entity si, 1 ≤ i ≤ n, from
the software system S can be represented as a 5-dimensional vector, hav-
ing as components the values of the different metrics, scaled to [0,1]: s =
(rp(si), dit(si), noc(si), fi(si), fo(si)) or, more formally, s = (si1, si2, si3, si4, si5).
Each element sik, 1 ≤ k ≤ 5 is the value of the corresponding software metric,
and the number of metrics is denoted by m (to have a more general definition).

Using this vector space model representation of the entities, a distance
metric, d(si, sj), can be defined as an adaptation of the Euclidian distance.
This metric, computed using Formula 1, is defined in such a way to measure
the dissimilarity between two entities. This means that it will assign small
values to pairs of entities that are cohesive and have to belong together, in
the same application class, and high values (possibly ∞) to pairs that are not
cohesive.

A STUDY ON HIERARCHICAL CLUSTERING BASED SOFTWARE RESTRUCTURING23

(1)

d(si, sj) =

0 if i = j√√√√ 1

m ·

(
1− |si1∩sj1|

|si1∪sj1| +
m∑
k=2

(sik − sjk)2

)
if si1 ∩ sj1 ̸= ∅

∞ otherwise

,

It is easy to prove that Formula 1 is a semi-metric function, and that the
distance between two entities that have common relevant properties is less
than 1.

3.2. The Automatic Refactorings Identification - ARI algorithm.
Considering the vector space model presented in 3.1, an algorithm capable
of finding a good restructuring of a software system was introduced in [10].
The input of the algorithm is the vector space model representation for each
entity s from the software system S, while the the output is a grouping of
these entities into different groups - clusters, - according to their similarity.
Each such cluster corresponds to an application class from the system. The
set of all clusters is called a partition and it represents a possible structure
of the software system S. The algorithm ARI tries to find a partition that
corresponds to a good internal structure of S. Then, comparing this partition
to the original structure of the software system, a list of refactorings can be
identified.

The ARI algorithm initially places each entity that is an application class
into a separate cluster. Then, the main idea is to place each method from the
software system in the cluster (i.e. application class), to which it is closest,
considering the distance metric d, or to place it in a new cluster if its distance
to the already existing application classes is greater than 1. Finally, if there
are application classes whose distance is less than 1, they will be merged.

Comparing the result of the ARI algorithm to the original partition of the
software system, three types of refactorings can be identified: Move Method,
Extract Class, Inline Class. For a detailed description of the ARI algorithm
and the identified refactorings, one can consult [10].

4. Unsupervised learning based restructuring

In this section we introduce an extension of the algorithm proposed in
[10], presented in Subsection 3.2, named HAC (Hierarchical Agglomerative
Clustering). It uses the same vector space model and distance semi-metric
as the ARI algorithm and hierarchical clustering, an unsupervised learning
method, to build a good restructuring of a software system.

24 ZSUZSANNA MARIAN

The HAC algorithm is based on hierarchical agglomerative clustering and
uses a heuristic function for merging two clusters. This heuristic function
expresses that two clusters are merged only if the distance between them is
less than 1. This value for threshold was chosen, because distances higher than
1 are obtained only for unrelated entities. The distance between two clusters
was computed using complete link linkage method, because this method gave
the best results.

The main steps the HAC algorithm performs for identifying the partition
K that is likely to correspond to an improved structure of the software system
S are the following:

(1) Initialise K as an empty partition.
(2) For each entity si from S create a new cluster that contains only si,

and add it to K. Now K = {K1,K2, ...,Kn} is the initial partition,
containing as many clusters as the number of entities in S.

(3) As long as changes can be done, the following steps are repeated:
i. Compute the distance di,j as d(Ki,Kj), where 1 ≤ i ≤ n and

i ≤ j ≤ n.
ii. Select the minimum distance dmin from the distances computed

at the previous step. Let i∗ and j∗ be the indexes of the clusters
whose distance is dmin.

iii. If dmin ≤ 1 then we will create a new cluster, Knew = Ki∗ ∪Kj∗ ,
and modify K in the following way: K = K \ {Ki∗ ,Kj∗} ∪Knew.

Like the ARI algorithm, this algorithm will also return a partition K of
the software system, where each cluster corresponds to an application class. If
this partition is equal to the original partition of S, K′, then we consider that
S has a good internal structure and no changes need to be done. If there are
differences between K and K′, S needs to be restructured. Different types of
differences correspond to different refactorings. The refactorings identified by
the HAC algorithm are the following:

• Move Method refactoring [6] - It means moving method m from
class c to class c′. Such a refactoring is justified when a method uses
or is used more by a different class than its own class. This type of
refactoring is identified, when a method m will be placed by HAC into
a cluster with a different application class, than its original application
class.

• Extract Class refactoring [6] - Extract class refactoring means cre-
ating a new application class c and moving some methods into it. This
refactoring is justified in case of a large class, with many functions
that should be split into at least two classes. This type of refactoring
appears, when at the end of HAC there are clusters, that contain only

A STUDY ON HIERARCHICAL CLUSTERING BASED SOFTWARE RESTRUCTURING25

methods, and no application classes. For these clusters a new appli-
cation class will be created that will contain the methods from the
corresponding cluster. Also, in such cases, the number of clusters in
K increases compared to the number of clusters in K′.

• Inline Class refactoring [6] - It means moving one class (together
with methods and attributes), inside of another class, and it usually
happens for small classes that does not do many things. This type
of refactoring is identified, when K contains clusters which have two
application classes inside. In this case, one of the classes will become
an inline class for the other one, which means that it will be moved
- together with methods and attributes - inside the other class. The
presence of such refactoring is shown also by the fact that K contains
fewer clusters than K′.

5. Computational experiments

In this section we aim at experimentally evaluating ARI and HAC algo-
rithms, providing a comparative analysis of the obtained results. Two case
studies are considered for evaluation, for which we applied both algorithms.
The first case study was a small, artificial example (taken from [12]) with two
classes, one of them containing a method that should belong to the other class.
For this simple example both algorithms identified the correct restructuring.

For our second case study we used JHotDraw (version 5.1), an open source
software [7]. It is a Java GUI framework for technical and structured graphics,
developed by Erich Gamma and Thomas Eggenschwiler. We chose JHotDraw
because it is a well-known example for the use of design patterns and for good
design, so we expected our algorithms to find only a few possible refactorings.
Another reason for choosing JHotDraw was the fact that, unlike our first case
study, this is a complex project, consisting of 173 classes, 1375 methods and
475 attributes.

5.1. ARI results. Applying the ARI algorithm to the JHotDraw framework,
20 Move Method refactorings were identified, which are presented in Table 1.
The first column shows the name of the method to be moved, while the second
contains the name of the class where the method should be moved to. The last
column shows whether we considered the given refactoring justifiable or not.
The justifications for the values in the last column (both Justified and Mis-
placed) are given below. When deciding on the justifications, we considered
three criteria. The first criterion was, whether the refactoring is justified con-
ceptually. The second criterion was, how complicated would it be to perform
the actual refactoring. In case of the Move Method refactorings, we consid-
ered how many attributes does the method use and where is it called inside

26 ZSUZSANNA MARIAN

the class. The third criterion, used mainly for the Extract Class refactoring
identified by the HAC algorithm, was whether the methods to be moved to
a new class could be replaced by a single method, sufficiently general that it
would implement the same responsibilities as the methods replaced with it.
For this criterion the justification was the“Rule of Three” presented in Martin
Fowler’s book on refactoring: when you write a similar piece of code the third
time, it is time to refactor [6].

Method Target class Remark

1. DrawApplet.createAttributeChoices CommandChoice Justifiable

2. DrawApplet.createFontChoice CommandChoice Justifiable

3. DrawApplication.saveAsStorableOutput StorableOutput Justifiable

4. DrawApplication.paletteUserOver ToolButton Justifiable

5. DrawApplet.paletteUserSelected ToolButton Justifiable

6. DrawApplet.paletteUserOver ToolButton Justifiable

7. DrawApplet.toolDone ToolButton Misplaced

8. DrawApplication.createColorMenu ColorMap Misplaced

9. DrawApplet.setupAttributes ColorMap Misplaced

10. DrawApplet.createColorChoice ColorMap Misplaced

11. DrawApplication.createEditMenu CommandMenu Misplaced

12. DrawApplication.createAlignmentMenu CommandMenu Misplaced

13. DrawApplication.createArrowMenu CommandMenu Justifiable

14. DrawApplication.createFontMenu CommandMenu Justifiable

15. DrawApplication.createFontSizeMenu CommandMenu Justifiable

16. DrawApplication.createFontStyleMenu CommandMenu Justifiable

17. DrawApplication.selectionChanged CommandMenu Misplaced

18. DrawApplet.readFromStorableInput StorableInput Justifiable

19. PertFigure.asInt NumberTextFigure Misplaced

20. PertFigure.setInt NumberTextFigure Misplaced

Table 1. Move Method refactorings suggested by the ARI algorithm

We give below the justification for the extracted refactorings.

DrawApplet.createFontChoice, DrawApplet.createAttributeChoices and Draw-
Applet.createColorChoice. These are the only three methods from the DrawAp-
plet class that have a name of the form ”createSomethingChoice” and all three
of them were identified as possible Move Method refactorings, but createCol-
orChoice was suggested to be moved to the ColorMap class (this is why it is
marked ”Misplaced”). All three of them use the method addItem from class
CommandChoice many times, which can be a sign of a need for refactoring.

DrawApplication.saveAsStorableOutput. This method creates an object of

A STUDY ON HIERARCHICAL CLUSTERING BASED SOFTWARE RESTRUCTURING27

type StorableOutput and calls its writeStorable method, passing to it as pa-
rameter an object of type Drawing (which, in turn, extends interface Storable).
Analysing the method writeStorable, we can see that the most important part
is calling the write method on the Storable object. Since the main part of writ-
ing is already done in class StorableOutput, and saveAsStorableOutput does
nothing strictly related to the class DrawApplication, it would make sense
moving the whole method to the StorableOutput class.

DrawApplication.paletteUserOver, DrawApplet.paletteUserSelected, DrawAp-
plect.paletteUserOver. Methods paletteUserOver and paletteUserSelected are
defined in interface PaletteListener. Since both DrawApplication and DrawAp-
plet implement this interface, the methods are implemented in both classes (so
there is a paletteUserSelected method in class DrawApplication, too). The im-
plementation of the methods is the same in both classes, which is an argument
for moving them to a single class. It would be possible to move the imple-
mentation of the PaletteListener interface, together with the methods, to the
ToolButton class as suggested by our algorithm.

DrawApplet.toolDone. This method comes from the DrawingEditor interface
which is implemented by the DrawApplet class. Since this interface contains
six methods, moving only one of them to a separate class is impossible.

DrawApplication.createColorMenu, DrawApplet.setupAttributes, DrawApplet.
createColorChoice. All three methods use many functions from the ColorMap
class, but they cannot be moved there. As mentioned above createColor-
Choice could be moved, but not to the ColorMap class. The same is true for
the createColorMenu method, and it will be detailed in the next part. Setu-
pAttributes uses five attributes of the DrawApplet class, so it cannot be moved
either.

DrawApplication.createColorMenu, DrawApplication.createEditMenu, DrawAp-
plication.createAllignmentMenu, DrawApplication.createArrowMenu, DrawAp-
plication.createFontMenu, DrawApplication.createFontSizeMenu, DrawAppli-
cation.createFontStyleMenu. First of all, createColorMenu was marked ”Mis-
placed”, because it was suggested to be moved to class ColorMap instead of
CommandMenu like the rest of the methods. The rest of the methods are quite
independent from class DrawApplication, they use only one of its attributes,
which could easily be passed as a parameter if the methods were moved. The
reason why methods createEditMenu and createAllignmentMenu were marked
as ”Misplaced” is that they are called in a method createMenus, together with
three other methods that create menus and it would be strange to move two

28 ZSUZSANNA MARIAN

methods to a different class, but leave three in DrawApplication.

DrawApplet.readFromStorableInput. This case is very similar to the one with
method DrawApplication.saveAsStorableOutput, the main part is done in the
read method from the Storable interface and the readStorable method from
class StorableInput, so the whole method could be moved to the StorableInput
class.

PertFigure.asInt, PertFigure.setInt. The source code of the JHotDraw frame-
work contains a package samples with four examples of how to use the frame-
work. These two methods belong to the example pert, so they cannot be moved
into a class from the framework.

5.2. HAC results. Applying the HAC algorithm to the same JHotDraw
framework, we got slightly different results: out of the 158 clusters identified
by the algorithm only 3 did not correspond to the existing structure of the
framework. These three clusters, represent possible Extract Class refactorings,
meaning that new classes should be created, and the selected methods moved
to the classes. The methods belonging to these three clusters are presented in
Table 2. Just like in Table 1, we marked each method either ”Justifiable” or
”Misplaced”. The reasons for assigning the labels are presented below.

Method Remark
1 ChangeConnectionHandle.findConnectableFigure Justifiable
2 ConnectionHandle.findConnectableFigure Justifiable

1 GroupFigure.handles Justifiable
2 TextFigure.handles Justifiable
3 StandardDrawing.handles Justifiable
4 NodeFigure.handles Misplaced
5 PertFigure.handles Misplaced

1 GroupCommand.execute Misplaced
2 UngroupCommand.execute Misplaced
3 AlignCommand.execute Misplaced
4 SendToBackCommand.execute Justified
5 BringToFrontCommand.execute Justified

Table 2. Extract Class refactorings suggested by the HAC algorithm

We give below the justifications for the found refactorings.

ChangeConnectionHandle.findConnectableFigure, ConnectionHandle.findCon-
nectableFigure. The reason why these two methods belong to the same cluster

A STUDY ON HIERARCHICAL CLUSTERING BASED SOFTWARE RESTRUCTURING29

is that they look exactly the same. They both are private methods which take
as parameter two integers and a Drawing, and they are both called from the
invokeStep method of their class, so they could be moved together in the same
class.

GroupFigure.handles, TextFigure.handles, StandardDrawing.handles, NodeFig-
ure.handles, PertFigure.handles. All these methods are similar, but the last
two of them are marked “Misplaced”, because they belong to the examples
provided in the JHotDraw framework. All of them build a vector contain-
ing four objects from classes that implement the Handle interface. They also
use the RelativeLocator class to define the position of these handles. This
class contains nine different “positions”: center, southWest, southEast, south,
northWest, northEast, west, north, east, but in the above methods only north-
West, northEast, southWest and southEast is used.

GroupCommand.execute, UngroupCommand.execute, AlignCommand.execute,
SendToBackCommand.execute, BringToFrontCommand.execute. Even if all
the methods use only one or two attributes from their class, only the methods
SendToBackCommand and BringToFrontCommand can be moved together,
because they are very similar, with the difference that one calls the sendTo-
Back method and the other the bringToFront method on a Drawing object.
But the rest of the three methods are so different from these two and from
each other, that they cannot be moved.

5.3. Comparative Analysis. Considering the results obtained after apply-
ing ARI and HAC algorithms and illustrated in Tables 1 and 2 we can conclude
the following:

• Both algorithms identify most of the existing classes in the JHotDraw
framework as correct, internally well-structured classes, which was ex-
pected, because JHotDraw is considered an example of good design.
Still, both algorithms find possible refactorings, some of them justifi-
able, some of them not. The HAC algorithm finds only 5 misplaced
methods, while ARI finds 9 misplaced methods. For both algorithms,
two of the misplaced methods come from the package which contains
sample applications, so they do not really count as errors.

• The HAC algorithm correctly identifies 3 possible Extract Class refac-
torings, which are not identified by the ARI algorithm.

The obtained results show that applying an unsupervised learning model (like
hierarchical clustering in this paper) would be beneficial, as machine learning
models are able to capture hidden patterns in data.

30 ZSUZSANNA MARIAN

5.4. Comparison to Related Work. In this section we aim to compare our
method to other methods from literature, presented in Section 2, that use
hierarchical clustering to find possible refactorings.

All the methods presented in Section 2, compute the distance between
elements using some kind of sets, defined for attributes, methods and, in case
of [4], classes. These sets are similar to the relevant properties metric in our
approach, but we use four other metrics for the distance, making it more
complex.

Compared to [11] and [5], the HAC (and also the ARI) algorithm is capable
of identifying three types of refactorings (not just the Extract Class). Direct
comparison of the results is impossible, because they use different software
projects as case study, which might not be available (in [11], a banking appli-
cation is used, developed by some students), and they do not report the exact
results (refactorings), only percentages of correctly identified refactorings.

The closest to our method is the HARS algorithm, in [4]. The difference
is, that it uses only the set of relevant properties for computing the distance
between two entities, and considered attributes as entities, too. [4] uses JHot-
Draw as a case study too, and it finds only one out of the three Extract Class
refactorings that HAC finds (but it finds also two Move Attribute refactorings,
which neither ARI nor HAC can find).

6. Conclusions and further work

In this paper we presented a new algorithm, HAC, that uses unsupervised
learning to find a good restructuring of a software system. Using the JHotDraw
framework as a case study, we compared the new algorithm, to an existing
one, called ARI, which identifies refactorings, but without using unsupervised
learning.

The results of the case study, presented on Tables 1 and 2 show that the
HAC algorithm identifies Extract Class refactorings, that are not identified
by the ARI algorithm. This demonstrates that using unsupervised learning
methods (hierarchical clustering in our case) for automatic refactorings iden-
tification is beneficial, because it can uncover hidden patterns in data.

Although the introduced algorithm is capable of finding three types of
refactorings, in the future we want to increase this number. This can be done
by considering the attributes as entities too, thus adding the Move Attribute
refactoring. Further investigations will be made to extend the vector space
model characterising the entities from the software system by identifying other
software metrics that are relevant for software restructuring.

A STUDY ON HIERARCHICAL CLUSTERING BASED SOFTWARE RESTRUCTURING31

References

[1] Nicolas Anquetil and Timothy Lethbridge. Experiments with clustering as a software
remodularization method. In Proceedings of 6th Working Conference on Reverse Engi-
neering, pages 235–255, Atlanta, USA, October 1999.

[2] Shyam Chidamber and Chris Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, June 1994.

[3] Istvan Gergely Czibula and Gabriela Serban. Improving systems design using a clus-
tering approach. International Journal of Computer Science and Network Security,
6(12):40–49, 2006.

[4] Istvan Gergely Czibula and Gabriela Serban. Hierarchical clustering for software systems
restructuring. INFOCOMP Journal of Computer Science, 6(4):43–51, 2007.

[5] Marios Fokaefs, Nikolaos Tsantalis, Alexander Chatzigeorgiu, and Jorg Sander. Decom-
posing object-orietend class modules using an agglomerative clustering technique. In
Proceedings of International Conference on Software Maintenance, pages 93–101, Ed-
monton, Canada, 2009.

[6] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[7] Erich Gamma. JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[8] Sallie Henry and Dennis Kafura. Software structure metrics based on information flow.

IEEE Transactions on Software Engineering, 7(5):510–518, September 1981.
[9] Sayyed Garba Maisikeli. Aspect Mining Using Self-Organizing Maps With Method Level

Dynamic Software Metrics as Input Vectors. PhD thesis, Graduate School of Computer
and Information Sciences Nova Southeastern University, 2009.

[10] Zsuzsanna Marian, Gabriela Czibula, and Istvan Gergely Czibula. Using software met-
rics for automatic software design improvement. Studies in Informatics and Control,
2012. Submitted for review.

[11] Akepogu Ananda Rao and Kalam Narendar Reddy. Identifying clusters of concepts in a
low cohesive class for extract class refactoring using metrics supplemented agglomerative
clustering technique. International Journal of Computer Science Issues, 8(2):185–194,
2011.

[12] Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In
CSMR ’01: Proceedings of the Fifth European Conference on Software Maintenance and
Reengineering, pages 30–38, Washington, DC, USA, 2001. IEEE Computer Society.

Department of Computer Science,, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Kogălniceanu 1, Cluj-Napoca, 400084, Roma-
nia.

E-mail address: marianzsu@cs.ubbcluj.ro

