
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LVII, Number 1, 2012

TOWARDS MDE IMPROVEMENTS FROM INTEGRATED

FORMAL VERIFICATIONS

ANNA MEDVE

Abstract. This paper presents a methodology to improve the scenario-
based modelling process from model checking and static analyzers during
behavioural modelling in MDE process. Our method consists on com-
bining modelling techniques with formal veri�cation techniques to obtain
an incremental iterative analysis process in an earlier phase of modelling.
This helps not to �x architectural decisions earlier, and to guard and ver-
ify some choice for variability. These are based on generic properties of
scenario modelling languages and veri�cation tools, presented in the pa-
per.This methodology contributes for future works, to obtain modelling
increments from a separate veri�cation engineering service process based
in our previous results.

1. Introduction and Motivation

The paper presents a methodology to improve scenarios models by evalu-
ating results of outputs and feedbacks from model checking and static analysis
performed with incremental veri�cation process.

As Bezivin stated in 2008 at Dagstuhl seminar [1], for the industrialization
of software engineering the individual veri�cation technology (such as model
checking, static analysis, or theorem proving) was insu�cient and that inte-
grated tool chains and workbenches for model-driven engineering (MDE) were
needed. We claim that individual veri�cation workbenches can be very useful
for supporting architectural decisions in earlier phases, when the abstraction
level is high and deadlock may occurs from incomplete domain attributes. In
this later case static analysis combined with model checking can raise the level
of genericity in architectural modelling.

Received by the editors: December 10, 2011.
1998 CR Categories and Descriptors. D.2 [SOFTWARE ENGINEERING]: D.2 Soft-

ware/Program Veri�cation � Model checking ; I.6 [SIMULATION AND MODELING]:
I.6.5 Model Development � Modeling methodologies.

Key words and phrases. MDE process, model improvements by veri�cation, scenario-
based modelling, formal veri�cation.

89

90 ANNA MEDVE

We belief that a systematic modelling process for integrating incremen-
tal veri�cation should provide model improvements in earlier phases of MDE.
For building an MDE process and integrating them with formal veri�ers it is
necesary to choose veri�cation workbenches and to perform various veri�cation
types, or �nd veri�cation engineering services. As a direct continuation of pre-
vious works [2, 15, 16], which introduced veri�cation engineer roles and tasks
using Verimag IFx-Omega toolset [12], this work proposes to obtain model
improvements based on veri�cation tasks and services.

In this paper we make the following novel contributions towards MDE
improvements presented in Section 3 and 4:

(1) We introduce a methodology for integrating incremental formal veri�-
cation in modelling process. We formulate steps for static analysis and
model checking-based scenario validation (in Section 4).

(2) We show concepts and language features from formal scenario-level
approach which can be e�ective to de�ne increments for checking ar-
chitectural decisions and build a scalable communication architecture
(Section 3).

(3) We highlight the e�ectiveness of our proposition based on research
results and trends in scenario-based design.

The rest of paper is structured as follows: Section 2 contains the theoretical
background. Section 3 and 4 contains the proposed contribution. Section 5
presents related works and discussion. The closing section contains the few
conclusions and future work.

2. Background

2.1. Model-based Development andModel-driven Engineering. Model-
based development (MDD) is a scalable process which is built on the global
model of software and is made up of heterogeneous components [18], which
provide several advantages within software paradigms:

• it has techniques on a high level of abstraction;
• it places the model and the consecutive model transformations in the
center of the development process;

• it replaces trials with validation and replaces real prototypes with vir-
tual prototypes;

• it has a strong relation among the methods, tools and model manage-
ment activities during the life cycle;

• it has the basis of support and guidance of design and validation and
the basis of the derived low-level descriptions close to implementation.

IMPROVEMENTS FROM MODEL CHECKING 91

The advantages and the heterogeneity to be attained require the integration
of the means of validation by methodological support in order to increase
e�ciency, robustness and �exibility in heterogeneous systems.

The Model-Driven Engineering (MDE) standard of OMG speci�es that
the model represents the system in an expert's observation and the model
conforms to its meta model [18]. Regarding the MDE paradigm and our model
re�nements aims, we supplement the notion of an MDE model and process with
conceptual and technical approaches of a given domain.

In MDE process the primary document is the Architecture Model, which
is not mandatory Model-Driven Architecture (MDA) if the rapid application
development (RAD) is used. The documents of an MDE process are the Re-
quirements Model, Architecture Model and the Implementation Model. The
abstraction of the problem lies in the Requirements Model, which we develop
into the Implementation Model with the help of systematic model transfor-
mations. The application is created from the Implementation Model by code-
generation.

The Architecture Model has a central role because it converges with the
requirements of the traditional development. This means to describe the ar-
chitectural decisions in an explicit way in the requirement cluster of the ar-
chitectural characteristics. The model relationships and roles in MDE have
highlighted the architecturally signi�cant requirements, which involve to place
the domain-speci�c knowledges at the basis of architectural decisions.

2.2. Formal Veri�cation Methods. Formal veri�cation is a broad term for
model checking, static analysis and model based testing of development arti-
facts formulated with formal methods.

An overview of large family of model checkers is presented at formal method
Wiki portal [9, 19].

Model checking is an automated technique that given a �nite state model
of a system and a property stated in some appropriate logical formalism sys-
tematically checks the validity of this property. Model checking is a general
approach. Case studies have shown that the incorporation of model checking
in the design process does not delay this process more than using simulation
and testing and for several case studies the use of model checking has led to
shorter development times[6, 10].

Model checking phase consist for checking and reporting. The veri�cation
tools operate as a simulator, following one possible execution path through
the system and presenting at the model checker GUI the resulting execution
trace or a counterexample if faults occur. The methods can be applied to all
or only the most critical portions of the system usefully for detecting both
basic and other type of errors. The most important is that the procedure is

92 ANNA MEDVE

completely automatic. Typically, the user provides a high level representation
of the model and the speci�cation to be checked. The model checking algorithm
will either terminate with the answer true, indicating that the model satis�es
the speci�cation, or gives a counterexample execution that shows why the
formula is not satis�ed. The counterexamples are particularly important in
�nding subtle errors in complex transition systems.

Static analysis

Static code analysis is a general term for a set of techniques used to aid
in the veri�cation of computer software without actually executing the pro-
grams. The analysis varies greatly depending on the tool employed and anal-
ysis guidelines applied in tools [9]. Static analysis is a powerful concept and
can signi�cantly aid in development of higher quality software. Speci�c static
analysis tools are style-checking tools, semantic analysis tools, deep-�ow static
analysis tools, which extend compilation and abstract interpretation capabil-
ities with generic and speci�c guidelines for checking. A static analysis tool
runs automatically and reports all defects it identi�es, some of which may
be insigni�cant and require little or no work to correct, whilst others could
be critical and need urgent correction. These defects therefore require strong
management to ensure that the full bene�t is obtained from using the tool in
the �rst place.

2.3. Attributes for the Selection of Model Checking Tools. Clarke et al.
in [6] argue on orientation toward error detection, as having methods and tools
which should support generating counterexamples as a means of debugging and
�nding errors, rather than for certifying correctness.

We investigated the most important requirements for a veri�cation toolset.
A model checking tool contains several input translation engines, the internal
or external computation engine for model checking execution, tools to extract
the results as outputs and feedback to the input . We enumerate the desired
set of properties for a veri�cation toolset [20],[10]:

(1) it supports heterogeneity and it integrates model checking with other
veri�cation and validation techniques;

(2) it o�ers combination of features for modelling and validation (i.e. it
provides language level access to descriptions and it implements static
analysis and optimization techniques);

(3) it is open to modelling languages and validation tools;
(4) it has mechanisms for restricting non-determinism and controlling ex-

ecution;
(5) it adopts asynchronous execution paradigm to be apt to validate sep-

aration of concerns and non-atomic interactions
(6) possibility of QoS predictability;

IMPROVEMENTS FROM MODEL CHECKING 93

(7) and last but not least, it is open for all kinds of already implemented
components with an adequate interface.

The IFx toolset [12], which we applied in previous work [15, 16] is automa-
ton based and satisfy the above enumerated requirements.

3. Extending MDE Processes by Integrating Incremental

Verification

Unlike a complete integrated tool chains and workbenches for MDE, we
follow to integrate tools by MDE process which is not intended as a commercial
entity. These veri�cation tools are sets of commonly agreed interfaces and
operating methods, that allow speci�c tools to interoperate with other tools
forming a complete working environment. This avoids tool dependencies of
model-based software applications mainly in earlier phases were multi-language
combination became widely used during platform independent modelling.

MDE processes operates dynamically in earlier phases for obtaining the Ar-
chitecture Model, which is the primary document of a process. The dynamics
has strong relationships with requirements model by modelling architecturally
signi�cant requirements and architectural decisions. The modelling process in-
volving formal veri�cation is illustrated in Figure 1. The roles for system mod-
elling and for model checking can be performed separately by experts in the
�elds. The export or import capabilities of modelling tools support safety and
e�ciency of model transformations needed between tools. This is expressed in
XMI/XML standard supporting terms.

Figure 1. Main MDE process and documents integrating for-

mal veri�cations

Formal veri�cation phase consists of con�guring, checking and reporting.
The veri�cation tools operate as a simulator, following one possible execution
path through the model increment resulting an execution trace and/or a coun-
terexample if faults occur which allows reasoning about model transformations

94 ANNA MEDVE

and to follow incremental veri�cation based on engineering capabilities. De-
pending on reports content and abstraction level of modelling, combination
of automaton based and temporal logic based veri�cation tools may be more
fruitful for incremental veri�cation.

Management tasks for integrating incremental veri�cation must involve
veri�cation engineering roles and resources, as is reported in [2, 15]. The veri-
�cation engineering tasks goals are to de�ne and control veri�cation increments
in order to discover and eliminate discrepancies between the modelling features.
The main process elements are from con�guring veri�cation tools for various
validation choices; analysis of counterexamples and model checking reports.

3.1. Explanation of Modelling Process with Integrated Incremental

Veri�cation. We introduce a small example quite complex for showing how a
formal scenarios-level approach can be e�ective to de�ne increments for check-
ing architectural decisions and to build scalable communication architecture.
In [14] we introduced the CompCon�gur pattern-based method and an exam-
ple for generic behaviour modelling for the domains which has client-server
communication model. This method gives generic domain model in form of a
set of class, architecture and scenarios diagrams.

We recall from [14] the example on GMSC (Gateway Mobile Switching
Center) call management and we improve it with not covered services. Figure
2 illustrates the model of a simpli�ed GSM network context. The behaviour of
a GMSC call management process is restricted to initiate calls received from
a local or a remote mobile station (MS, i.e. telephone, intelligent network
element), to hande the occurred errors for ensuring the correct performance of
connection, and to close the calls.

The static model of GMSC is obtained with CompCon�gur architecture
pattern language [14] as it shows in Figure 3 and 4. In the case, when the
generic architecture pattern not covers every roles and events from a speci�c
domain, it is need to be completed on architectural level for checking their
consistency further during the analysis process of detailed design. This case
it occurs in recalled example from [14] and it is discussed in this paper, i.e.
the architecture model obtained in a way from architecture pattern language
is improved by scenario modelling, and model checking.

In the next, by using this example we explain the incremental nature of
scenarios and we show the use of scenarios language features, which engage
modelling of scenario fragments.

Let the function location of mobile stations that need to be introduced in
model. The location service is provided from Basic Station Controllers(BSC)

IMPROVEMENTS FROM MODEL CHECKING 95

Figure 2. The context of a simpli�ed GSM network

Figure 3. The GMSC class model obtained from applying ar-

chitectural pattern language

for Mobile Stations. For this network elements their static model can be ob-
tained from Wrapper Facade architectural pattern. Location service is acti-
vated by switching center for user demand. Figure 5 and 6 show two di�erent
modelling technique-based scenario models for Mobile Station Location Center
(MSLC).

Figure 5 illustrates a bird eye view of the MSL scenario model of the MS
location procedure. It serves to follow the message �ow to read and �nd events
of MSL function. The composition is di�cultly to read, reuse or modify and
not supports architectural modelling.

96 ANNA MEDVE

Figure 4. The GMSC architecture model obtained from apply-

ing architectural pattern language

Figure 5. The MSL scenario model in cascade style of message

�ows.GSM actors from left to rights: ENV, MS, BTS, BSC,

SW, EMERG, MSL, HRL,VRL

Figure 6 shows the MSL scenario model built on referenced subscenarios
and messages that prepare the call of subscenarios. Referenced scenarios act
as remote calls from discovered functionality or event. These form an entity
for checking or structuring architectural levels.

IMPROVEMENTS FROM MODEL CHECKING 97

Figure 6. The MSL scenario model in incremental modeling

style of scenario fragments and their triggering messages. GSM

actors from left to rights: ENV, MS, BTS, BSC, SW, EMERG,

MSL, HRL,VRL

Scenarios fragments allows to follow systematic iterations for incrementing
the models and checking for deadline and inconsistencies.

Largely implemented scenario language properties which have results in ver-
i�cation increments are those inter-scenario constraints for searching of pair
wise roles in scenarios guided from: scenario reduction from the Inactive En-
tity; Collaboration-based reduction by reference of one interaction to other
interactions within the same (or other) collaboration (remote call); Role de-
composition in an interaction into an interaction of its component parts such as
create; Data composition from observations; - Control- based separations such
as call, kill ; Inline operators for scenario relationships such as alt, opt, loop,
par, corregion, exp, comp, decomp, as Message Sequence Charts (MSC)[13]
language features as well.

Performing model improvements addressing domain properties,
such as QoS characteristics, intermediate state transitions to handle error
states with fault tolerance for locally corrected, globally nothing bad events,
modelling as negative and positive scenarios.

First we perform a scenario-based modelling process to obtain a require-
ments model from the user views. Next, we augment it with generic and speci�c
domain requirements to obtain an earlier architecture model. This results in

98 ANNA MEDVE

state-based implementation models by integrating in process iteration steps of
model checking and model re�nements.

The above listed process starts with the modelling interactions between
environment and system parts, generic in their nature for the domain. At this
modelling phase the major part of the system is abstracted into communication
subsystem which assures the safety and performance of the system. To avoid
earlier architectural decisions we perform requirements engineering based on
generic domain properties and architecturally signi�cant requirements. We can
obtain it from architectural pattern language. It results in interaction diagrams
for the architecture model.

We introduce an iteration of incremental formal veri�cation. For this an
input is needed in the veri�cation workbench. The architecture model re-
sulted from scenario modelling gives the input for veri�cation. Depending on
system modelling tools support for XMI transformations we perform a trans-
lation process or we translate manually the scenario-based model from earlier
architecture modelling.

If the choosed veri�er has properties discussed in subsection 2.3 then the
input for veri�er will be obtained from an XMI or XML translation of the
architecture model.

To perform veri�cation engineering an expert modeler or a veri�cation
engineering service is needed in process.

In the case of an automaton based model veri�er the scenario translation
will give the input. In the case of a temporal logic based model veri�er the
annotated scenario will give a formal basis to construct the input model for
the veri�er and the input speci�cation as temporal logic expressions.

In the case of manual translation of scenario model into automata's model,
which consist of scenario-based model transcription based on conditional an-
notations for each input signal of a scenario in order to form conditions which
behave as states of the emitter-receiver actors in a scenario communication.
The receiver will perform a state transition conform to the scenario. It con-
sists of performing one or more actions, decisions, emitting one or more output
signals and going in the next state or remaining in the same state.

Some con�guration is speci�ed for the static analysis process in order to
obtain model transformations or counterexamples. The veri�cation possibil-
ities varies from the abstraction level of the system under veri�cation and
the modalities in static analysis followed by deadlock and live lock checking.
These are presented in the following section in the form of a set of steps in the
veri�cation process and of re�nements of the initial system model.

3.2. Veri�cation Increments for Model Improvements. Model improve-

ments based on veri�cation increment:

IMPROVEMENTS FROM MODEL CHECKING 99

The modelling and checking of safety and liveness properties are essen-
tials for absence of deadlock. The deadlock is the general property, where the
program stop and makes no further progress.A safety property asserts that
nothing bad happens. A liveness property asserts that something good even-
tually happens. The veri�cation of these properties in earlier modelling phases
using small portions of the usage models to obtain increments will improves
the quality of architectural modelling.

Static analysis services from veri�cation tools give feedback on unreach-
able states, unusable variables, or dead code sequences. These result in a
refactored model that supports the analysis process in creation of model im-
provements. The visualization of removed unreachable states and transitions
supports observation-control based analysis for fault localization in the design
model.

Veri�cation of liveness properties provide useful informations for perform-
ing analysis related on architectural decisions, i.e. procedural or functional
aspect of the unused variable make explicit the designer biases on functional
orthogonality of distributed tasks and variability options resulting in depen-
dency and not of a scalable architecture.

Synthesized model improvements could be obtained from a simultaneously
analysis of veri�cation results and corresponding scenario language features
localized in scenario model as is indicated in Section 3.1.

In order to obtain granularity of models and to make decisions if the model
is complete we observe the results of static analysis for dead variable, i.e the
removed variables and signal parameters with their dependency. Setting vari-
ations in the con�guration �le is the way for obtaining the provisioned test by
eliminating subsets of functionality.

In a previous experiment in formal veri�cation [15] with a simpli�ed vend-
ing machine system we observed signi�cant state space reduction from com-
bination of static analysis tools services before model checking for automated
deadlock check.

4. Methodology for integrating incremental formal

verification in modelling process

Strategies for con�guring veri�cation engineering resources:

First at all, it needs to �x a set of strategy depending on veri�cation
engineering goals, services and capabilities, which are considered in the con�g-
uration of the behaviour of static analyzer and model checker used:

• for using the automatic con�guration in order to not take into account
temporal constraints,

100 ANNA MEDVE

• for using a scheduling model in order to describe certain temporal con-
straints,

• for reducing possibility of state explosion in order to detect possible
deadlocks,

• for obtaining the test of the model, which corresponds to an advanced
model checking process by con�guring the tool features for verifying the
model behaviour with the help of temporal logics and other abstractions
given in tools,

• for carrying out model increments veri�cation by con�guring the static
analyzer tool with the behaviour attributes and prede�ned guidelines
from standards and references.

Steps for integrating incremental veri�cation in scenario modelling:

• Step1: Establish scenarios models as the input to veri�cation.

Create/improve the high-level scenario-based model in MSC or UML2.0
SD. [13]. Export and convert it for input for a given static analysis tool.

• Step2-2a: Perform static analysis. Carry all basic features of
static analysis (Live, Reach, Slicing (the order counts), and Prede�ned

Guidelines) and their variations depending on simulation capabilities
of the used tool. Iteration can be build from modes of Step8-2b and
Step9-2c.

• Step3: Analyze the reports from veri�cation tool. Perform
an observation-based control to obtain veri�cation increments, which
make feedback directly on analyzer con�guration and on requirements
model.

• Step4: Return to improve the scenarios. Decompose static anal-
ysis feedback and handle it in order to quantify quality requirements
(time, domain, resource), to reduce the number of scenario imprecision;
to produce a model consistent domain knowledge and requirements
goals; to produce additional information required for development.

• Step5: Control inter-scenario constraints. De�ne and control
constraints on interactions for synthesized increments in order to elim-
inate discrepancies arising in inter-model communication. Inactive en-
tities give support to revision of architectural decisions on task distri-
bution.

• Step6: Synthesize increments. The exploration of results from
various con�guration modes of static analyzer gives veri�cation incre-
ments, which improve modelling features as scenario, as use case, as
quality requirements, as fault-tolerant scenario category, as input to
the next veri�cation act and transformation.

IMPROVEMENTS FROM MODEL CHECKING 101

• Step7: Feedback to new con�gurations. Con�gure con�gure the
veri�cation tool features with abstract descriptions related to time,
domain or resource quanti�cations.

• Step8-2b: Perform model checking for deadlock check. Carry
out basic features of deadlock checking from veri�cation tool. Iterations
will results from combination of Step2-2a and Step9-2c. Follow Step3.

• Step9-2c: Perform model checking for model-based testing.

Carry all basic features of static analysis (Live, Reach, Slicing (the or-
der counts), and Prede�ned Guidelines) and their variations depending
on simulation capabilities of the used tool. Iterations will result from
combination of Step2-2a and Step8-2b. Follow Step3.

• Step10-2d: Perform testing. CADP, SPIN, for carrying out the
testing of model, which corresponds to an advanced model checking
process by con�guring the tool features for verifying the model be-
haviour with the help of temporal logics and other abstractions given
in tools,

Applying those steps the user can observe and validate the speci�cations in
order to be able to decide whether the speci�cation has hiatuses or the model
is faulty. This gives feedback for simple safety features which may occur at
every run. These may be basic �ndings starting from: deadlocks, message
losses and time settings, or they can be much more speci�c depending on the
domain attributes.

5. Discussion and Related Work

Recent real-world industrial case study on the modelling and validation has
stated in Bozga et al. [3] that for such large examples, push-button veri�cation
is not su�cient and some iterative combination of analysis and validation is
necessary to cope with complexity. They state principles of a veri�cation
methodology with three views : systemic view, requirements classi�cation,
observation-control based separation of dates.

In [7] Damas et al. present how negative and positive scenarios are the
useful tools in requirements engineering for resulting in scenario-based mod-
elling with formal veri�cation which integrate goal, scenario, and state machine
models where portions of one model are synthesized from portions of the other
models. Our previous works in goal-oriented requirements engineering take
account on this win-win engineering framework. These give consistency from
iterated goal and improve earlier architecturally decisions.

Werner-Stark et al. in [21] apply systems' theory to obtain granularity and
to control the domain quanti�ers with qualitative transformations by building

102 ANNA MEDVE

intelligent diagnosis methods for the cases of transient operating conditions,
e.g. when it is controlled by an operating procedures.

The Omega UML pro�le [12, 17] uses IFx to provide a new pro�le for
real-time and embedded systems modelling and veri�cation which extends the
expressivity of the currently existing tools. Omega are applied for UML models
in other recent works to handle models and model re�nements [11]. In future
work we apply them to preserve consistency in model improvement steps and
to handle the non-determinism of time progress with incremental veri�cation.
Visser et al in [22] introduce an iterative technique in which model checking
and static analysis are combined to verify large software systems. In their
framework the role of the static analysis is to compute partial order information
which the model checker uses to reduce the state space, but it not put the focus
on earlier architectural decisions and model based veri�cation.

In [5] Frappier et al. describe, utilize at the same example and compare the
results from widely used six model checking tools for deciding which of them
is the better for the validation of IS speci�cation in model-driven engineering.
They do not �nd generic solutions and not put the focus on veri�cation tools
for searching and deciding on the needed veri�er capabilities.Their conclusion
hold on our hypothesis on the need for MDE process engineering in each de-
velopment case for optimizing the process among generic and speci�c domain
properties, and existing tools and methods.

Bucchiarone et al in [4] apply in whole process model checking tools as
automaton based and temporal logics based, as well for verify and test dur-
ing entire process of component based web application development. Their
method gives generic aspects for formal veri�cation framework building meth-
ods. Hannousse et al. in [8] give a generic method for applying static analysis
for cross-cutting aspect veri�cation during the composition process.

6. Conclusions and Further Work

We introduced some results of a general approach on integration of formal
veri�cation into a scenario-based MDE methodology. Namely, a process and
techniques based on static analysis and model checking and scenario-based
processes.

In more detail, during the design process one produces a systematically
granulated set of scenarios which are used for de�ning the state-based model of
the target system. This model can be then subject to various formal veri�cation
tools appropriate for Model Driven Engineering (MDE) (model checking, petri
nets, etc.).

Our method for model improvements with incremental veri�cation lies both
to formal veri�cation integrated into the tool chains and the workbenches used

IMPROVEMENTS FROM MODEL CHECKING 103

by a design methodology, and both to individual veri�cation toolsets. The
essence is to draw hope from available veri�cation tools and advances in veri-
�cation techniques to integrate veri�cation into model-based or model-driven
processes.

As future work we plan to apply research results from [7, 17] to work out
steps for consistency preservation. Our approach gives rise to a novel con-
ceptual framework for scenario-based model-driven requirements engineering
and earlier validation involving model checking. Our results are far from be-
ing complete; further analyses and classi�cations are required based on action
research for veri�cation engineering services and tools.

7. Acknowledgements

The authors wish to thank László Kozma who contributed with ideas and
help throughout this work.

We thank the anonymous referees for their valuable comments..
This research work was supported by TÁMOP-4.2.1/B-09/1/KMR-2010-

0003.

References

[1] J. Bézivin, R.F. Paige, A. Uwe, B. Rumpe, D. Schmidt, : Model En-
gineering for Complex Systems, Perspectives Workshop: Model Engineer-
ing of Complex Systems (MECS), Dagstuhl Seminar Proceedings 08331,
http://drops.dagstuhl.de/opus/volltexte/2008/1603.

[2] Zs. Borsi, L. Kozma, A. Medve, One Veri�cation Problems of the Component-based
Software Development, 8th International Conference on Applied Informatics, ICAI'2010,
Eger, Hungary, 2010, Vol. 2. pp. 391-399.

[3] M. Bozga, S. Graf, L. Mounier, Il. Ober, Iu. Ober, J. Sifakis, The IF toolset, For-
mal Methods for the Design of Real-Time Systems, LNCS 3185, 2004, pp.237-267,
http://www-if.imag.fr/

[4] N. Bucchiarone, H. Muccini, P. Pellicione, P. Pierini, Model-Checking plus Testing: from
Software Architecture Analysis to Code Testing, In Proc. Int. Workshop on Integration
of Testing Methodologies, FORTE 2004. LNCS 3236 pp. 351-365.

[5] Marc Frappier, Ben�t Fraikin, Romain Chossart, Raphael Chane-Yack-Fa, and Mo-
hammed Ouenzar, Comparison of Model Checking Tools for Information Systems,(Eds.:
J.S. Dong and H. Zhu , ICFEM 2010, LNCS 6447, pp. 581�596, 2010

[6] E. M. Clarke, E. A. Emerson, J. Sifakis, Model checking: algorithmic veri�cation and
debugging, Communications of the ACM Volume 52 , Issue 11, (2009), pp: 74-84.

[7] C.Damas, B.Lambeau, A.van Lamsweerde, Scenarios, Goals, and State Machines: a
Win-Win Partnership for Model Synthesis, Proc. FSE'06: Intl. ACM Symposium on
the Foundations of Software Engineering, Portland (OR), November 2006., pp. 197-207.

[8] A. Hannousse, R. Douence, G. Ardourel, Static analysis of aspect interaction and com-
position in component models, 10th ACM International Conference on Generative pro-
gramming and component engineering, GPCE 2011, pp. 43-52.

[9] formalmethods.wikia.com.

104 ANNA MEDVE

[10] T. Hoare, J. Misra, Veri�ed software: Theories, tools and experiments: Vision of a
Grand Challenge project, LNCS 4171 Springer, 2005, pp 1-18.

[11] J.Hooman, H.Kugler, I.Ober, Y.Yushtein, Supporting UML-based Development of Em-
bedded Systems by Formal Techniques, Int. J. of Software and Systems Modeling, Vol-
ume 7, Number 2, 2008, pp. 131-155.

[12] IFx-OMEGA Toolset: http://www.irit.fr/ifx/; http://www-if.imag.fr/ OMEGA Euro-
pean Project (IST-33522), http://www-omega.imag.fr/

[13] ITU-T, Message Sequence Charts (MSC), ITU-T Recommendation Z.120, Genova. 1999.
[14] Medve, A., Kozma, L., Ober, I. :General Modelling Approach Based on the Intensive

Use of Architectural and Design Patterns, Ed. H. Weghom, P. Isaias, R. Vasiu, Int.
Conf.on Applied Computing, IADIS 2010, Timisoara, Romania, October 10-16, 2010,
pp. 251-256.

[15] A.Medve, Gy.Orbán, L.Kozma: Let's go veri�cation engineering, 8th Int. Conference
on Applied Informatics, Eger, Hungary, January 27-30, 2010, Vol. 2. pp. 417-427.

[16] A. Medve, L. Kozma, MDE process and model improvement using the Verimag IFx
veri�cation tools, 8th Joint Conf. on Mathematics and Computer Science, MaCS 2010,
Komárno, Slovakia, July 14-17, 2010, Selected p. Published by NOVADAT Ltd. pp.
323-336.

[17] Il.Ober, S. Graf, Iu. Ober, Validating timed UML models by simulation and veri�cation.
International Journal of software Tools for Technology Transfer (STTT), Volume 8,
Number 2, April, 2006. Springer Verlag, pp 128-145.

[18] OMG , http://www.omg.org/technology/documents/index.htm.
[19] SPIN website: http://spinroot.com/spin/whatispin.html.
[20] VSTTE: Second IFIP Working Conference on Veri�ed Software: Theories, Tools, and

Experiments, Oct 6�9, 2008, Toronto, Canada http://qpq.csl.sri.com/vsr/vstte-08.
[21] A.Werner-Stark, E. Németh, K. Hangos, Knowledge-Based Diagnosis of Process Systems

Using Procedure HAZID Information, in Knowledge-Based and Intelligent Information
and Engineering Systems, LNCS 6883, 2011, pp. 385-394.

[22] W. Visser, G. Brat, Combining Combining Static Analysis and Model Checking for
Software Analysis,16th IEEE In. Conf. on Automated software engineering, ASE 2001,
IEEE CS, Washington, DC, USA , pp.262-272.

Department of Electrical Engineering and Information Systems, Faculty

of Information Technology, University of Pannonia; PhD Student, Faculty of

Informatics, Eötvös Loránd University

E-mail address: medve@almos.uni-pannon.hu

