
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 1, 2012

A SOFTWARE REPOSITORY AND TOOLSET FOR

EMPIRICAL RESEARCH

ARTHUR-JOZSEF MOLNAR

Abstract. This paper proposes a software repository model together with
associated tooling and consists of several complex, open-source GUI driven
applications ready to be used in empirical software research. We start by
providing the rationale for our repository and criteria that guided us in
searching for suitable applications. We detail the model of the reposi-
tory together with associated artifacts and supportive tooling. We detail
current applications in the repository together with ways in which it can
be further extended. Finally we provide examples of how our repository
facilitates research in software visualization and testing.

1. Introduction

Empirical methods are of utmost importance in research, as they allow
for the validation of formal models with real-life data. Many recent papers in
software research contain sections dedicated to empirical investigation. In [11],
Kitchenham et al. propose a set of guidelines for researchers undertaking em-
pirical investigation to help with setting up and analyzing the results of their
investigation. Stol et al. survey existing empirical studies concerning open
source software in [19], presenting predominant target applications together
with employed research methods and directions. More recently, Weyuker
overviewed the development of empirical software engineering, highlighting
notable success stories and describing current problems in the field [26].

While software literature abounds with empirical research [26], we find a
lack of advanced tooling to support such endeavours. Many of the required
steps in carrying out empirical research are repetitive in nature: find suit-
able applications, set them up appropriately, configure them, run the desired
experimental procedures and conclude the procedure. Our aim is to assist
researchers interested in carrying out empirical investigation by providing an
extensible repository of complex open-source software that is already set up

Received by the editors: January 31, 2012.
2010 Mathematics Subject Classification. 68N01.
1998 CR Categories and Descriptors. D.2.0 [Software]: Software Engineering – General .
Key words and phrases. Software Repository, Empirical research.

73



74 ARTHUR-JOZSEF MOLNAR

and has multiple associated software artifacts that simplify research in areas
such as code analysis, software visualization and testing.

An important step was to study existing research-oriented repositories in
order to take necessary steps to address shortcomings of previous approaches.
Herraiz et al. [10] describe approaches to obtain research datasets from freely
available software repositories such as SourceForge1 together with associated
mining tooling such as FLOSSmole2 [8]. In [1] Alexander et al. present
the ”Software Engineering Research Repository (SERR)” [1] which consists
of source code, software models and testing artifacts that are organized by
project. Authors describe SERR as a distributed repository that is easy to
extend and which can bring benefits related to software education, research
and to provide solid artifact examples for developers.

This paper is structured as follows: the following section details our criteria
in searching for suitable applications, while the third section details academic
tools used to obtain some of the complex artifacts in our repository. The
fourth section is dedicated to detailing our repository’s model while the fifth
section details its contents. Previous work using the repository is detailed in
the sixth section while the last section presents conclusions and future work.

2. Criteria for Suitable Applications

In this section we detail criteria that guided our search for applications
suitable as targets for empirical research in domains such as software visual-
ization, analysis and testing. We believe the following criteria to be generally
useable in assessing the fitness of candidate software applications as targets of
empirical research:

• Usability : We believe all meaningful research must target useful soft-
ware. While a broad term, our opinion is that a vibrant user and
developer community that share ideas and actively guide the develop-
ment of the application to be a good sign of such software. Also, many
hosting sites such as SourceForge provide detailed download statistics
that can be used to assess real life usage for candidate applications.
We present relevant statistics for applications in our repository in the
5th Section of the present paper.

• Complexity : Real software is complex and today we have lots of method-
ologies and metrics for assessing software complexity. Thorough re-
search must be accompanied by several relevant complexity metrics

1http://sourceforge.net/
2http://flossmole.org/



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 75

and should be tied with the usability criteria mentioned above.

• Authorship: We believe that picking applications totally unrelated to
the research effort goes a long way in proving its general applicability.
The best way to achieve this is to select target applications produced
by third parties that are uninterested and unrelated to the undertaken
research efforts [11].

• Availability : The first requirement for using software is of course its
availability. This has multiple implications that are best described
separately:

– Legal : It is best when target applications are provided under a
free software style license. This allows unrestricted access to view
or alter source code as needed and the possibility of further distri-
bution within the academic community for purposes of validating
research or allowing others access to expand it. In this regard free
software licenses3 compel those who alter the target software to
continue providing the modified versions under the same license,
preventing legal lock-in.

– Technical : Many research efforts require tracking the evolution of
the applications under study. For example, Memon uses a total of
19 software versions of FreeMind [21], GanttProject4 and JMSN5

in a case study that attempts to repair GUI test cases for regres-
sion testing [16]. In [27], Xie and Memon present a model-based
testing approach where a total of 24 versions of four open-source
applications are used as case study targets. In addition, our re-
search requires access to multiple target application versions. Our
jSET visualization and analysis tool [2] was tested using multiple
versions of applications in our repository, which were again reused
in our work in heuristically matching equivalent GUI elements [3].
All these efforts were possible by having open-source applications
available that have a public source code repository such as Source-
Forge with available change history going back several years.

3http://www.gnu.org/licenses/license-list.html#GPLCompatibleLicenses
4http://www.ganttproject.biz
5https://sourceforge.net/projects/jmsn



76 ARTHUR-JOZSEF MOLNAR

• Simplicity : The need to access multiple versions of the same software
application raises the importance of the simplicity criterion. In order
to have multiple programs set up, configured and ready to run applica-
tions should not require complex 3rd party packages such as relational
database management systems or web servers that many times are
challenging to set up, configure and clean up once investigation has
concluded. This has become apparent both in our research [3, 2] and
in case studies by Xie and Memon [27, 16], Xiao et al. [18], Do and
Rothermel [6, 7] and many others.

3. Related Tools

When developing our repository we made a goal out of harnessing ad-
vanced research frameworks to obtain complex artifacts associated with the
included applications. In this section we briefly describe the Soot6 static anal-
ysis framework and the GUITAR7 testing framework which we use to obtain
complex artifacts that describe our repository applications.

Soot is a static8 analysis framework targeting Java bytecode [20, 12, 13].
Currently there are many types of analyses Soot can perform [12, 13], some
of which are planned for future integration into our repository. One of the
most important artifacts produced by Soot is the application’s call graph: a
directed graph that describes the calling relations between the target applica-
tion’s methods [12]. The graph’s vertices represent methods while the edges
model the calling relations between them. Being computed statically, it does
not provide information regarding the order methods are called or execution
traces. This static callgraph is an over-approximation of all the dynamic call-
graphs obtained by running the application over all its possible inputs. Of
course, this means the graph will contain spurious edges and nodes, some of
which can be eliminated by using mode advanced algorithms [13]. By default,
we use the SPARK engine detailed in [12] to obtain callgraphs for applications
in our repository.

The second tool we employ is the GUIRipper application part of the com-
prehensive GUITAR toolset [9]. GUIRipper acts on a GUI driven target ap-
plication [15] that it runs and records all the widgets’ properties across all
application windows. It starts the target application and records the prop-
erties of all the widgets present on the starting windows and fires events on
them9 with the purpose of opening other application windows that are then

6http://www.sable.mcgill.ca/soot
7http://sourceforge.net/apps/mediawiki/guitar/index.php?title=GUITAR Home Page
8It does not run the target application
9Clicking buttons, selecting menu items



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 77

recorded in turn. The resulting GUI model described in [15] is then persisted
in XML format for later use. It is important to note that the only required
artifact is the target application in compiled form. Although completely au-
tomated, GUIRipper’s behaviour can be customized using configuration files.
This makes it possible to avoid firing events with unwanted results, such as
creating network connections, printing documents and so on. The GUIRipper
tool is available in versions that work with Microsoft Windows and Java appli-
cations [22]. We currently use the Java implementation of the tool to capture
GUI models for applications in our repository.

The following section presents our proposed repository model and details
our changes to Soot and GUITAR that allow recording more information about
target applications.

4. The Repository Model

Our repository is modeled as a collection of Projects, where each Project
represents a target application at a given moment in time. For example, a
project describes the FreeMind application detailed in the 5th Section as found
on its SourceForge CVS on November 1st, 2000. Other projects can represent
the same application at different points in time. Having multiple projects
for the same application helps when studying regression testing, tracking and
analyzing software evolution and much more. Each project consists of the
following artifacts:

• Project File. This is an XML file that contains the project’s name and
location of associated artifacts. It is similar in function to Eclipse’s10

.project and Visual Studio’s11 .sln files.
• Application binaries. Each project contains two sets of binary files:

the compiled application and its required libraries. We currently use
different directories for each of these sets of files. Also, the directory
containing application binaries contains a script that starts the ap-
plication. While this may appear trivial, it becomes important when
multiple versions of the same application are present. Many times
applications record user options and configurations in system-specific
locations (e.g: %WINDOWS%/Users) which if not properly handled
might cause other versions of the same application to malfunction or

10http://eclipse.org/
11http://msdn.microsoft.com/en-us/vstudio/aa718325



78 ARTHUR-JOZSEF MOLNAR

provide inconsistent behaviour12. To mitigate these aspects we man-
ually checked each application version’s source code and created ade-
quate startup scripts to set up a consistent environment for the appli-
cation, which is cleaned after the program’s execution.

• Application sources. Each project has a source directory that contains
the application’s source code. The sources should be complete in the
sense to allow recompiling the application.

• GUI Model. Contains the XML model obtained by running our modi-
fied version of GUITAR’s GUIRipper on the target application.

• Widget Screenshots. Our modified version of the GUIRipper appli-
cation records screenshots that are associated with the GUI widgets.
This allows studying the widgets’ appearance without having to start
the application. Due to their large number, screenshots are not stored
on our SVN repository [23], but are easy to obtain by running the
scripts that record the GUI model. This way they will be automati-
cally placed in the correct project subfolder.

• Application callgraph. This is the callgraph obtained by running our
Soot wrapper over the target application.

Our repository [23] is structured so that every project has its own SVN di-
rectory, making it easy to select and download individual projects. In addition
to providing actual repository data, our toolset implemented using the Java
platform allows programmatic access to target application data. Each project
is programmatically represented by an instance of the jset.project.Project class
which provides access to the project artifacts discussed above. Loading Project
instances is done via the jset.project.ProjectService class that provides the re-
quired methods. Our model provides access to method bytecode using the
BCEL13 library that we use to parse compiled code as shown in Figure 3. More
so, loaded jset.project.Project instances link method bytecode with available
sources using Eclipse JDT [24] as a source code parser.

For handling complex artifacts, our repository projects contain all neces-
sary scripts together with Soot and GUIRipper configuration files that allow
recomputing the callgraph and GUI model at any time. A lot of work was dis-
pensed when building the required configuration files to make sure all aspects
of the target applications are correctly recorded in a repeatable manner. This
effort was also reflected in the scripts used when starting the application to
make sure that application GUIs remain consistent across multiple executions.

12Especially as many applications were not designed to co-exist in multiple versions on
the same machine

13Bytecode Engineering Library - http://commons.apache.org/bcel



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 79

The following sections further detail our model by presenting our changes
to the GUITAR and Soot frameworks together with our GUI and callgraph
model implementations. Also, we describe how projects can be obtained in an
automated build environment.

4.1. GUI model. To make the most of available tooling, we started by mod-
ifying GUITAR’s GUIRipper to provide some additional model information:

• Widget screenshots. Every time the GUIRipper records a GUI element
it will also save a screenshot of its parent window. The element’s
associated screenshot together with location and size on the containing
window are recorded among its properties so it can be later located by
our software tools.

• Event handlers. Our modified version of GUIRipper records all event
handlers of recorded GUI elements. This provides the link between
the GUI layer and its underlying code.

The GUI model is persisted in GUIRipper format, but on programmat-
ically loading the project it is converted into a simpler model we developed
to gain independence from external implementations. While adding an ex-
tra step, our model provides simplicity while allowing better control when
using other model sources such as XAML [14], UIML [17] or HTML. This
becomes important as extending our repository beyond the desktop paradigm
is a target for future work. Also, by persisting the model in its original format
makes it easy to compare models without first having to convert them, which
is important when setting up the process for a new target application.

Our hierarchical GUI model is shown in Figure 1. Each GUI is represented
using an instance of the GUI class, which has no physical correspondent on the
actual user interface. Its windows and widgets are represented by GUIElement
descendants as such: windows are the first level children of the root node while
contained widgets descend from their containing windows true to the GUI
being modeled. Most GUI element attributes are represented with simple data
types such as String or Integer. An important aspect regards the Id property
which is used by our process to uniquely identify a graphical element. The
Id must be provided externally to our process as a String instance with the
restriction that each element must have a unique identifier. This is enforced
in our implementation using safeguard checks that take place when loading
the project.

Externally obtained models are converted into our own by providing an
implementation for the IGUIModelTransformer interface. One such imple-
mentation is already available for use with GUIRipper models; other model
sources require implementing a suitable transformer.



80 ARTHUR-JOZSEF MOLNAR

Figure 1. GUI model

4.2. Callgraph Model. Soot does not provide an endorsed model to persist
computed callgraphs so we implemented a wrapper over Soot that persists the
callgraph using a JAXB-backed model detailed in Figure 2. The central class
is XmlCallGraph which holds a collection of XmlMethod instances. Note that
the callgraph model does not contain classes directly, but they can be inferred
using the inClass attribute of XmlMethod instances.

An important aspect regards the three boolean attributes of the Xml-
Method class: inFramework, inLibrary and inApplication. When computing
the application call graph, we divide analyzed classes into framework, library
and application. Framework classes are ones provided by the Java platform
itself in libraries such as rt.jar, jce.jar14 and so on. Library classes are usually
provided on the classpath while application classes are the ones that actually
comprise the target software. As the callgraph only models methods and not
classes, this information is persisted using them. Also, we must note that
multiple classes with the same name might be present in a virtual machine15,
so the three categories are not mutually exclusive.

When a Project instance is loaded, the XML model is read and callgraph
information is combined with static class data obtained using the BCEL16

14On the Oracle Java implementation
15The Xerces XML library provides such an example
16http://commons.apache.org/bcel/



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 81

Figure 2. JAXB-backed callgraph model

library. The obtained model is shown in Figure 3. JClass and JMethod in-
stances are wrappers around BCEL implementations and provide class and
method level details such as line number tables, constant pools and method
instruction lists in human readable form. The model is browsable using meth-
ods provided in JClassRepository.

Our model’s most pressing limitation concerns obtaining the project’s code
model shown in Figure 3. As BCEL and Soot only work on Java programs,
the model cannot be constructed for applications implemented using other
platforms. While specialized tools equivalent to BCEL exist for other plat-
forms, we do not have knowledge of tools equivalent to Soot. This leads to
the limitation that complete Projects can only be recorded for Java software.

Figure 3. Project code model

4.3. Automatically Building Projects. Because each project instance cap-
tures a snapshot of the target application, it raises the interesting question of



82 ARTHUR-JOZSEF MOLNAR

integrating project building with application development. This can help with
setting up multiple software versions for research automatically or for purposes
of software visualization and analysis [3, 2]. Therefore one of our goals was
to provide means to enable automatically building projects from target appli-
cation sources. Application sources and associated binaries can be obtained
using a regular nightly/weekly build process. Obtaining secondary artifacts
such as the GUI model and application callgraph is possible using scripts such
as ones provided with all the projects currently in our repository.

Automating the process for a new target application requires the creation
of suitable script files that compile the application, run our modified version
of GUIRipper and Soot wrapper over the compiled sources and place the ob-
tained artifacts into proper directories. Both GUIRipper and our Soot wrapper
are extensively customizable using configuration files which only need to be
updated in case of major GUI or application classpath changes.

5. Repository Contents

The search based on the criteria laid out in the 2nd section led us to two
target applications: the FreeMind [21] mindmapping software and the jEdit
[25] text editor. Both of them are available on the SourceForge website and
are provided with free-software licenses that allow altering and distributing
their source code. The present section discusses both these applications.

5.1. FreeMind. The FreeMind mind mapping software is developed on the
Java platform and is available under GNU’s GPL license on Windows, Linux
and Mac platforms. Our repository contains 13 distinct versions of the Free-
Mind application, dated between November 2000 and September 2007. We
used a script to download weekly snapshots of the application starting with
the earliest stable version, released as 0.2.0. The development process was not
steadily reflected in the source code repository as we found a notable hiatus
in CVS data between 2005 and 2006. Out of the weekly versions obtained we
found most to be identical regarding source code. Using manual examination
we distilled the available data to 13 versions that have differences in source
code. Table 1 contains details regarding the downloaded versions such as CVS
time, approximate corresponding release version and the number of classes,
lines of code and GUI widgets recorded.

Regarding the data shown in Table 1, some clarifications are in order:

• The number of classes17 includes those generated from XML models,
but does not include library or third-party classes.

17All the metrics were computed using the Eclipse Metrics plugin
http://metrics.sourceforge.net



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 83

Version CVS Timestamp Classes LOC Widgets Windows
0.1.0 01.11.2000 77 3597 101 1
0.2.0 01.12.2000 90 4101 106 1
0.2.0 01.01.2001 106 4453 132 1
0.3.1 01.04.2001 117 6608 127 1
0.3.1 01.05.2001 121 7255 134 1
0.3.1 01.06.2001 126 7502 136 1
0.3.1 01.07.2001 127 7698 137 1
0.4.0 01.08.2001 127 7708 137 1
0.6.7 01.12.2003 175 11981 244 1
0.6.7 01.01.2004 180 12302 251 1
0.6.7 01.02.2004 182 12619 251 1
0.6.7 01.03.2004 182 12651 251 1
0.8.0 01.09.2007 544 65616 280 1

Table 1. Versions of FreeMind used

• The number of lines of code (LOC) includes all non-empty and non-
comment lines of code. It therefore includes class and class member
declarations and other code that in some cases might be considered as
overhead.

• The number of widgets includes all visible or hidden user interface ele-
ments recorded by GUIRipper. Therefore this number includes trans-
parent panels employed for grouping controls and elements that might
be too small to notice (e.g: 1x1 pixel size) or hidden by Z-ordering.

• Version number is approximative, as sources were downloaded directly
from CVS.

With regards to the criteria described in the 2nd section, the FreeMind
project was chosen ”Project of the Month” in February 2006. The week ending
January 29th 2012 saw almost 40.000 downloads, with the total number of
downloads being over 14.3 million18.The current version19 of the application
is 0.9.0 and checking its source control reveals it to be in active development.

By analyzing data in Table 1 certain interesting facts about the application
can be noted. First of all we notice the proliferation of Java classes used to
build FreeMind: while the first version in our repository only has 77 classes,
most later versions have well above 150 classes, topped by the complex 0.8.0
version with over 500 classes. Also, we witness source code line count being
in close progression with the number of classes. An interesting aspect regards

18http://sourceforge.net/projects/freemind/files/stats/timeline
19as of January 30th, 2012



84 ARTHUR-JOZSEF MOLNAR

the widget count, that increases by a factor of 2.8 during an 18 fold increase
in source line count. Another aspect we must mention is that the only window
ripped for FreeMind is its main window. Starting with version 0.6.7, FreeMind
also has an Options window that could not be correctly ripped and so was left
out. While not necessarily a threat to the validity of undertaken research, this
aspect must be properly taken into account.

5.2. jEdit. The jEdit application is a basic text editor written using Java
and similar to FreeMind, is available under the GNU GPL license on multiple
platforms. For building our application repository we used a number of 17
versions of this application. While having a public source code repository
we chose to select among the many available releases of jEdit for picking the
versions. Similar to our approach with FreeMind, we only selected distinct
versions (so there are guaranteed code changes between any two versions)
that had at least one month of development between them. This allowed us to
build a repository containing a reasonable number of applications spread over
a number of years with the possibility of including other intermediary versions
when required.

It is worth noting that while FreeMind versions were downloaded directly
from CVS, for jEdit we used versions that were released by developers and
publicly available on the project’s download page. This aspect should be
taken into account by users of our repository, as it is not unreasonable to
assume that FreeMind versions might display more errors or inconsistencies.

The first version of jEdit considered is the 2.3pre2 version available since
January 29th, 2000, while the latest version we used is 4.3.2final, released on
May 10th, 2010. As with FreeMind, there was a significant hiatus in the devel-
opment of jEdit between versions 4.2.0final and 4.3.0final respectively. Table
2 presents the versions in our repository together with some key information
related to each version, as in the case of the FreeMind application.

Please note that the clarifications detailed in the FreeMind section also
apply to the present data, excepting the one referring to software versions.

Studying Table 2 some interesting facts come to light. First of all we can
see the recorded metrics changing as jEdit evolves to a more mature version,
almost tripling its number of classes and quadrupling the source code line
count. Unlike FreeMind, jEdit presents a user interface that consists of more
that 10 windows in each of the recorded versions. However while the code
metrics increased significantly, the number of windows did not, staying be-
tween 12 and 16 across all the versions (although they become more complex
by containing an ever increasing number of widgets). Unfortunately, as in
the case of FreeMind, jEdit’s Options window could not be ripped and was
therefore excluded from the data above.



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 85

Version CVS Timestamp Classes LOC Widgets Windows
2.3pre2 29.01.2000 332 23709 482 12
2.3final 11.03.2000 347 25260 533 14
2.4final 23.04.2000 357 25951 559 14
2.5pre5 05.06.2000 416 30949 699 16
2.5final 08.07.2000 418 31085 701 16
2.6pre7 23.09.2000 456 35020 591 12
2.6final 04.11.2000 458 35544 600 12
3.0final 25.12.2000 352 44712 584 13
3.1pre1 10.02.2001 361 45958 590 13
3.1pre3 11.03.2001 361 46165 596 13
3.1final 22.04.2001 373 47136 648 13
3.2final 29.08.2001 430 53735 666 12
4.0final 12.04.2002 504 61918 736 13
4.2pre2 30.05.2003 612 72759 772 13
4.2final 01.12.2004 650 81755 860 14

4.3.0final 23.12.2009 872 106398 992 16
4.3.2final 10.05.2010 872 106510 992 16

Table 2. Versions of jEdit used

Regarding the eligibility criteria described in the 2nd section, SourceForge
reports over 9.000 downloads during the week ending January 29th 2012 and a
total number of over 6.7 million downloads since the project was started at the
end of 1999. Also, jEdit was selected as SourceForge ”Project of the Month” in
October, 2010. Its long development history and available download statistics
clearly show that jEdit has a large userbase and is in active development with
multiple source code commits in January 2012.

6. Uses of Our Repository

Our repository is already employed in ongoing research regarding topics
such as software visualization, program analysis and automated testing. Its
first use was to provide target application input data for the software com-
ponents in our jSET [4, 2] visualization and analysis tool. The multiple ap-
plication versions were put to good use in our research regarding regression
testing of GUI applications [3], an ongoing effort that will greatly benefit from
extending our repository. Having repository data at hand freed us from tasks
such as setting up target applications and recording the various required ar-
tifacts. Also, the large volume of data allowed carrying out detailed studies
and drawing compelling conclusions.



86 ARTHUR-JOZSEF MOLNAR

Because both applications that form the bulk of our repository data were
used in many previous empirical investigations [28, 27, 29, ?, 30, 5] we believe
our repository model and data are relevant for many future research efforts.

7. Conclusions and Future Work

In this paper we presented a proposed software repository model popu-
lated with 30 versions of two complex, widely used GUI-driven open-source
applications that is freely available for researchers [23]. We detailed changes
to popular academic tools that allow recording of key application artifacts to-
gether with a software model that allows easy programmatic access to repos-
itory Project instances. We already employed the presented applications in
our research regarding software visualization and analysis [2] and in regression
testing GUI applications [3].

As with many repositories, our first and foremost goal lays in extending
it. The main limitation of our repository lays in the fact that both included
applications are Java-based. The first future direction is to search for and
include software based on other platforms such as .NET or Python. Such
efforts must be mirrored by finding suitable applications for code analysis
that work on the targeted platform and provide similar functionality to BCEL
and Soot, allowing us to build suitable application models.

More generally, we must study how to extend our repository model beyond
the desktop paradigm so web and mobile applications can be included. Addi-
tional research must be carried out on artifacts relevant for other paradigms
together with available tools that can be employed to obtain them.

A more distant idea is to switch the repository to a distributed model that
simplifies future contribution, thus fueling its growth, like proposed in [1].

Acknowledgements

The author was supported by programs co-financed by The Sectoral Op-
erational Programme Human Resources Development, Contract POS DRU
6/1.5/S/3 - “Doctoral studies: through science towards society”

References

[1] Alexander, R. T., Bieman, J. M., and France, R. B. A software engineering
research repository. SIGSOFT Softw. Eng. Notes 29 (September 2004), 1–4.

[2] Arthur-Jozsef, M. jSET - Java Software Evolution Tracker. In KEPT-2011 Selected
Papers, Presa Universitara Clujeana, ISSN 2067-1180.

[3] Arthur-Jozsef, M. A heuristic process for GUI widget matching across application
versions. Annales Universitatis. Scientiarum Budapestinensis, Sectio Computatorica
(2012).



A SOFTWARE REPOSITORY AND TOOLSET FOR EMPIRICAL RESEARCH 87

[4] Arthur-Jozsef, M. jSET - Java Software Evolution Tracker - extended abstract. KEPT
2011 Conference, Cluj Napoca (July 2011).

[5] Brooks, P. A., and Memon, A. M. Automated gui testing guided by usage profiles.
In Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering (New York, NY, USA, 2007), ASE ’07, ACM, pp. 333–342.

[6] Do, H., and Rothermel, G. An empirical study of regression testing techniques incor-
porating context and lifetime factors and improved cost-benefit models. In Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of software engi-
neering (New York, NY, USA, 2006), SIGSOFT ’06/FSE-14, ACM, pp. 141–151.

[7] Do, H., and Rothermel, G. Using sensitivity analysis to create simplified economic
models for regression testing. In Proceedings of the 2008 international symposium on
Software testing and analysis (New York, NY, USA, 2008), ISSTA ’08, ACM, pp. 51–62.

[8] English, R., and Schweik, C. M. Identifying success and tragedy of floss commons:
A preliminary classification of sourceforge.net projects. In Proceedings of the First Inter-
national Workshop on Emerging Trends in FLOSS Research and Development (Wash-
ington, DC, USA, 2007), FLOSS ’07, IEEE Computer Society, pp. 11–.

[9] Hackner, D., and Memon, A. M. Test case generator for GUITAR. In ICSE ’08: Re-
search Demonstration Track: International Conference on Software Engineering (Wash-
ington, DC, USA, 2008), IEEE Computer Society.

[10] Herraiz, I., Robles, G., and Gonzalez-Barahona, J. M. Research friendly soft-
ware repositories. In Proceedings of the joint international and annual ERCIM work-
shops on Principles of software evolution (IWPSE) and software evolution (Evol) work-
shops (New York, NY, USA, 2009), IWPSE-Evol ’09, ACM, pp. 19–24.

[11] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin,
D. C., Emam, K. E., and Rosenberg, J. Preliminary guidelines for empirical research
in software engineering. IEEE Trans. Softw. Eng. 28 (August 2002), 721–734.

[12] Lhotak, O. Spark: A flexible point-to analysis framework for java. Tech. rep., McGill
University, Montreal, 2002.

[13] Lhotak, O. Program analysis using binary decision diagrams. PhD thesis, Montreal,
Que., Canada, Canada, 2006. AAINR25195.

[14] MacVittie, L. A. XAML in a Nutshell (In a Nutshell (O’Reilly)). O’Reilly Media,
Inc., 2006.

[15] Memon, A. M. A comprehensive framework for testing graphical user interfaces. PhD
thesis, 2001. AAI3026063.

[16] Memon, A. M. Automatically repairing event sequence-based gui test suites for regres-
sion testing. ACM Trans. Softw. Eng. Methodol. 18 (November 2008), 4:1–4:36.

[17] Phanouriou, C. UIML: A Device-Independent User Interface Markup Language. PhD
thesis, 2000.

[18] Qu, X., Cohen, M. B., and Rothermel, G. Configuration-aware regression testing:
an empirical study of sampling and prioritization. In Proceedings of the 2008 interna-
tional symposium on Software testing and analysis (New York, NY, USA, 2008), ISSTA
’08, ACM, pp. 75–86.

[19] Stol, K.-J., Babar, M. A., Russo, B., and Fitzgerald, B. The use of empirical
methods in open source software research: Facts, trends and future directions. In Pro-
ceedings of the 2009 ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development (Washington, DC, USA, 2009), FLOSS ’09, IEEE
Computer Society, pp. 19–24.



88 ARTHUR-JOZSEF MOLNAR

[20] Sundaresan, V. Practical techniques for virtual call resolution in java. Tech. rep.,
McGill University, 1999.

[21] Website. http://sourceforge.net/projects/freemind/. Home of the FreeMind project.
[22] Website. http://guitar.sourceforge.net/. Home of the GUITAR toolset.
[23] Website. https://sourceforge.net/projects/javaset (Home of our software repository

and tooling).
[24] Website. http://www.eclipse.org/jdt (Home of the Eclipse Java development tools).
[25] Website. http://sourceforge.net/projects/jedit/. Home of the jEdit project.
[26] Weyuker, E. J. Empirical software engineering research - the good, the bad, the ugly.

In Proceedings of the 2011 International Symposium on Empirical Software Engineering
and Measurement (Washington, DC, USA, 2011), ESEM ’11, IEEE Computer Society,
pp. 1–9.

[27] Xie, Q., and Memon, A. M. Model-based testing of community-driven open-source
gui applications. In Proceedings of the 22nd IEEE International Conference on Software
Maintenance (Washington, DC, USA, 2006), IEEE Computer Society, pp. 145–154.

[28] Yuan, X., Cohen, M. B., and Memon, A. M. Gui interaction testing: Incorporating
event context, 2011.

[29] Yuan, X., and Memon, A. M. Alternating gui test generation and execution. In
Proceedings of the Testing: Academic & Industrial Conference - Practice and Research
Techniques (Washington, DC, USA, 2008), IEEE Computer Society, pp. 23–32.

[30] Yuan, X., and Memon, A. M. Generating event sequence-based test cases using gui
runtime state feedback. IEEE Transactions on Software Engineering 36 (2010), 81–95.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogalniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: arthur@cs.ubbcluj.ro


