
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 1, 2012

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION

DEVELOPMENT

PAUL HORAŢIU STAN

Abstract. Model Driven Architecture (MDA) defines three layers of ab-
straction for a domain: Computation Independent Model (CIM), Platform
Independent Model (PIM) and Platform Specific Model (PSM). Nowadays
in software industry the translation from PIM to PSM is made by devel-
opers that implement the model diagrams. This paper presents a new
Domain Specific Language (DSL) for developing data intensive applica-
tions. The proposed DSL contains a grammar for specifying the PIM and
a transformation engine to .NET PSM. The benefits of the proposed DSL
resides in the possibility to write transformations to many PSM not only to
.NET web applications. Finally a comparison with WebML and WebDSL
is presented.

1. Introduction

In software engineering, a DSL represents a custom programming language
dedicated to a particular problem domain. It contains a minimal set of state-
ments understood by the people who use domain specific concepts.[11].

This paper presents a DSL for specifying data intensive web applications.
Using the proposed DSL, a PIM of an application can be defined, then using
transformations to given PSM the source code can be automatically generated.

The terms PIM and PSM are most frequently used in the context of the
MDA [1] approach. This MDA approach corresponds to the OMG vision of
Model Driven Engineering. The main idea is that it should be possible to use
a Model Transformation Language (MTL) to transform a PIM into a PSM.

The paper is structured as follows: Section 2 presents the problem that the
current research intend to solve, divided into two subsections that describe (1)
current DSL for data intensive web applications and (2) the proposed solution;

Received by the editors: September 26 2011.
2010 Mathematics Subject Classification. 68N15, 68N20.
1998 CR Categories and Descriptors. D.2.11 [Software]: SOFTWARE ENGINEERING

– Software Architectures D.2.13 [Software]: SOFTWARE ENGINEERING – Reusable Soft-
ware; D.3.4 [Software]: PROGRAMMING LANGUAGES – Processors;

Key words and phrases. Domain Specific Languages, Model Transformation, Code
generators.

59

60 PAUL HORAŢIU STAN

Section 3 shows the technical details of the proposed DSL for data intensive
applications together with a comparison with WebML and WebDSL two of
the most actual DSLs for web modeling, and finally, Section 4 summarizes the
research results.

2. The Problem

In order to improve the quality and the development time of the final
software products, the software engineering industry should use abstraction
more and more. By retaining knowledge about lower level operations in higher-
level abstractions, developers can work with higher-level concepts and save the
effort of composing the lower-level operations [11, 10].

The conventional abstraction technique that involves methods and classes
are no longer sufficient for creating new abstraction layers [15, 1]. Libraries and
frameworks are good at encapsulating functionality, but it is often awkward
for developers to reach that functionality, using, in many cases the application
programmers interface (API) [11].

The common parts of the domain are implemented by code generation
templates, while the custom variables are configurated by the application de-
veloper using configuration interfaces. These configuration interfaces can take
the form of a wizard for simple domains, or complex languages for larger do-
mains [11].

The scope of our research is web applications with a rich data model. That
is, applications with a database for data storage and a user interface providing
several views on the data in the database, including CRUD operations. An
additional assumption is that the data model cannot be changed at run-time.

2.1. Current DSLs for web applications. There are many development
environments and programming languages that can be used to design and im-
plement data intensive applications, but these are general purpose languages,
in other words, are not specialized only on a given domain.

This section presents two of the actual DSLs for web application develop-
ment: Web Modeling Language (WebML) and Web Domain Specific Language
(WebDSL).

Web Modeling Language (WebML) can be used to define web sites under
distinct dimensions: (1) structural model which expresses the data content
of the site, in terms of the entities and relationships, (2) composition model
contains the pages that compose it, (3) navigation model represents the topol-
ogy of links between pages, (4) presentation model defines the layout and
graphic requirements for page rendering, (5) personalization model contains
the customization features for one-to-one content delivery. All the concepts
of WebML have two representations: graphic notation and a textual XML

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION DEVELOPMENT 61

syntax. WebML specifications are independent of programming languages or
development platforms. WebML is a model-driven approach to web site de-
velopment [6, 14]. WebML enables developers to define the core features of a
web application at a higher level avoiding architectural details. All proposed
concepts are associated with intuitive graphical symbols which can be easily
supported by CASE tools and useful for the non-technical members of the
application development team [16, 14].

WebML defines basic units such as: Data unit, Index unit, Entry unit,
Create unit, Delete unit, etc that have graphical representation and a default
implementation; for instance the Create unit enables the creation of a new
entity instance [16, 2]. These basic units are translated to a PSM in order to
become an application. One of the commercial tools that implement WebML
specifications is WebRatio.

WebDSL [8, 3, 9, 4] is another DSL for developing web applications with
a data model. The main features of WebDSL are: (1) Domain modeling,
(2) Presentation, (3) Page-flow, (4) Access control, (5) Data validation, (6)
Workflow, (7) Styling, (8) Email. WebDSL applications are translated to Java
web applications, and the code generator is implemented using Stratego/XT
and SDF [11, 10].

WebDSL has the following types of statements: (1) function definition, (2)
variable declaration, (3) assignment, (4) if, (5) return, (6) for loop, (7) while
and (8) switch [4].

The definition of a page has three parts: (1) the name of the page, (2)
parameters definition, and (3) a presentation of the data encapsulated in the
parameters. WebDSL provides basic markup operators such as: (1) section,
(2) header, and (3) list for defining the structural model of a page. Data from
the object parameters are displayed in the page by data access operations
such as output. Collections of data can be iterated using the for construct.
It is possible to display the content of an object based on a condition. Using
custom templates the developer can define reusable parts of code. Finally,
WebDSL supports the separation of the concepts, user-defined concepts can
be grouped in modules [4].

2.2. The proposed DSL for web applications. This section presents the
current DSLs for data intensive web applications and the big picture of the
proposed DSL for developing data intensive applications.

2.2.1. Problem Motivation. DSLs for web applications intend to solve the same
problem, all of them are focus on web applications domains and intend to
provide a common language for these domains. A new DSL should contain
fewer statements than a general-programming language like Java or .NET and
should work with more abstract things and should be able to (1) automatically

62 PAUL HORAŢIU STAN

transform a PIM into a general-programming language and to (2) simulate the
PIM before the transformation process.

At this moment, WebML and WebDSL have transformation engines only
to Java. The main motivations of the proposed DSL are: the PIM should
be easily translated to different programming languages, the syntax should
contains fewer ”words” than WebDSL, the language should be easily extended
with platform dependent routines.

2.2.2. Conceptual view of the proposed solution. Nowadays many applications
process data, these data are shown to the user via windows, web pages, differ-
ent type of mobile forms etc. In the proposed solution these things are modeled
using the Page concept. A page shows/reads data to/from the user interface
and receives user’s actions. For displaying and reading data few statements are
needed, and for catching user actions the event concept is introduced into the
proposed solution. So, it is a good thing for each defined event to have an event
handler, the body of the event handler contains a set of statements that control
the application flow. In the proposed solution these statements are structured
into four categories: (1) User Interface Statements, (2) Domain Statements,
(3) Persistence Statements and (4) Control Flow Statements. They will be
detailed later into this paper. The statements work with domain objects: (1)
Entities, (2) Value Objects and (3) Specifications. Domain objects are used to
define the static model of the application, while statements define its dynamic
model.

3. Technical details

This section describes the proposed solution’s details. First subsection
shows the architecture of the proposed DSL, the second describes how the
solution works in a real context and the last one makes a comparison with
WebML and WebDSL during the development process of a web site that man-
ages books, authors and members.

3.1. The proposed DSL’s architecture. Figure 1 shows the metamodel of
the proposed DSL for developing data intensive applications. The solution
involves (1) a simple language with few concepts to ensure the syntax will
be easily understandable by developers and (2) a transformation engine to
different PSMs. At this moment only the transformation to .NET web sites is
available, but the PIM allows transformations to Java web sites, .NET desktop
applications, Java desktop applications, Java and .NET mobile applications,
etc.

The metamodel classes are divided into three main categories:

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION DEVELOPMENT 63

ModelElement

Page Statement DomainConceptEvent

BasicStatement ExternalStatement

operates

DomainStatement UIStatement

PersistenceStatement ControlFlowStatement

ValueObjectEntity

Figure 1. Proposed DSL’s metamodel

• Pages and Events, used in order to manage the interaction with the
human user, display data and read user actions;

• Domain Concepts, used for defining the business model of the system,
that includes entities and relations between them;

• Statements, used for specifying the behavior of the system. There are
basic statements and external statements the latter representing cus-
tom operations defined by the development team. An external state-
ment is a link between a new platform-independent statement and a
platform-dependent statement, acting as a wrapper.

Each page has a list of events with at least one event called main event,
raised when the page is loaded. An event other than the main event represents
a user action. Each event has an event handler with the same name. The
event handler has a list of statements for describing the system response when
a given event appears.

In order to define the static model of an application a developer can use
the following domain concepts:

• Entities, can be stored into the persistent storage, can have properties
of primitive types and can be associated with another entities in one

64 PAUL HORAŢIU STAN

of the following ways: one to one, one to many, many to one and many
to many. The Domain Driven Design (DDD) patterns have been used
for designing the Entity metamodel class [12].

• Value Objects, which cannot be stored into the persistent storage, can
have only properties of primitive types and cannot be associated with
another domain concept. The name Value Object has been adapted
from [12].

• Specification, validation rules for Entities or Value Objects, containing
a list of properties like an entity and a logical expression that will be
evaluated for a given domain object. Available operators for composing
the logical expression are: and, or, not, not=, <=, >=, <, >, ==, -,
+, *, /.

Listing 1 presents a specification example. The name of the specification is
FilterMembersByName and it is applicable to Member entities. The specifica-
tion has a single property of type String called myMemberName. The logical
expression checks if the first name or the last name of a given member con-
tains the myMemberName property as a substring. The logical expression can
be composed with logical operators and with specification functions which are
either (1) Basic functions, defined into the proposed DSL or (2) External func-
tions being like external statements links between new platform-independent
functions and platform-specific functions implemented by the development
team.

Listing 1. A specification example

1 Specification FilterMembersByName for Member{

2 myMemberName:String

3 expression: (contains(Member.FName ,myMemberName) or contains

(Member.LName ,myMemberName))

4 }

For defining user interfaces and system behavior, the developer should
create pages and enter control statements in the bodies of event handlers for
controlling the processing flow.

The basic statements are divided into four main categories:

• Domain Statements, which operate over domain concepts such as En-
tities, Value Objects and Specifications.

• User Interface Statements, are used to display data to the user or to
read data from the pages.

• Persistence Statements, useful when storing and loading entities to,
respectively from, the repository.

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION DEVELOPMENT 65

• Control flow statements, a subset of similar statements from a general
programming language.

3.2. The transformation process. The Transformation engine has two in-
puts: (1) the model specified in the proposed DSL and (2) platform-specific
templates, in our case .NET templates. These templates contain code snip-
pets for .NET. The result of the process is the generated source code of the
application which is the PSM.

3.3. How it works. This section describes how the entire solution works,
presents simple code examples written in the proposed DSL and the transfor-
mation process from the DSL code to the Microsoft C#.NET code. Listing 2
presents the essential elements of the proposed language in the Xtext grammar
specification language.

Listing 2. DevDSL’s grammar

1 /*Level 1*/

2 Model :{Model}

3 ’config ’ ’{’Config += Config*’}’

4 elements += AbstractElement *;

5

6 /*Level 2*/

7 AbstractElement: DomainObject | Specification | Page;

8 DomainObject: Entity | ValueObject;

9

10 /*Level 3*/

11 Entity: ’Entity ’ name=ID ’{’

12 (attributes += Attribute)*

13 ’}’;

14

15 ValueObject:’ValueObject ’ name=ID ’{’

16 (attributes += ValueObjectAttribute)+

17 ’}’;

18

19 Specification: ’Specification ’name=ID’

20 for ’(domainObject =[DomainObject] | ’Object ’) ’{’

21 (attributes += Attribute)*

22 ’expression ’’:’expression=LogicalExpression

23 ’}’;

24

25 Page: ’Page ’ name=ID ’{’

26 FirstEvent=Event

27 NextEvents +=Event*

28 ’}’;

66 PAUL HORAŢIU STAN

29

30 /*Level 4*/

31 Attribute: name=ID ’:’ type=(RefType|StdType);

32 ValueObjectAttribute:name=ID ’:’type=StdType;

33

34 Config: name=QualifiedName ’=’ value=STRING;

35

36 Statement:

37 // Domain Statements

38 CreateObject|EraseObject|SetObjectProperty|GetObjectProperty|

AddElementToList|RemoveElementFromList|Satisfy|Filter|

39 //UI Statements

40 DisplayObject|DisplayList|DisplayButton|ReadObjectFromUI|

Redirect|

41 //DB Statements

42 SaveEntityToRepository|LoadList|DeleteEntityFromRepository|

43 // ControlFlow Statements

44 IfStatement|WhileStatement|ForEachStatement |

45 // External statements

46 ExternalStatement;

47 ...

In order to create a PIM of an application, a developer should write a text
file named [filename].app which should contain the following sections:

• the config section
• the domain objects section
• the pages section.

Each application should start with the config section, which can contain
database connection properties for instance hibernate configurations.

Listing 3. Config Section

1 config {

2 proxyfactory.factory_class=

3 "NHibernate.ByteCode.Castle.ProxyFactoryFactory ,

4 NHibernate.ByteCode.Castle"

5 connection.provider=

6 "NHibernate.Connection.DriverConnectionProvider"

7 dialect=

8 "NHibernate.Dialect.MsSql2005Dialect"

9 connection.driver_class=

10 "NHibernate.Driver.SqlClientDriver"

11 connection.connection_string=

12 "Server=servername;Initial Catalog=database;

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION DEVELOPMENT 67

13 User Id=user;Password =*****"

14 hbm2ddl.auto=" update"

15 }

The domain objects section contains definitions for Entities, Value Objects
and Specifications, the static model of the application. Entities and Value Ob-
jects are similar to classes in a general object oriented programming language.

Listing 4. Domain Objects Section

1 Entity Book{ Entity Author{

2 Title: String FName:String

3 ISBN : String LName:String

4 Price: Double BDate:String

5 Pages: Integer Royalties:Royalty*

6 Royalties:Royalty* }

7 LibraryBooks:LibraryBook*

8 }

9 Entity LibraryBook { Entity Royalty{

10 RealBook:Book RBook:Book

11 StockId:String RAuthor:Author

12 Value:Double RAmount:Double

13 Lends:Lend* }

14 }

15 Entity Member { Entity Lend {

16 FName:String LMember:Member

17 LName:String LLibraryBook:LibraryBook

18 BDate:String LendDate:String

19 Sex:String ReturnDate:String

20 Address:String Days:Integer

21 StartDate:String Fee:Double

22 Dues:Double }

23 Lends:Lend*

24 }

The listing 4 defines the same model as the figure 2 which is an WebML
data model diagram.

The last section a developer should write is the Pages section, which con-
tains the dynamic model of the application. The listing 5 presents a demo
page specification using the proposed DSL.

Listing 5. Page Demo

1 Page CurrentBook{

2 Page_Load{

68 PAUL HORAŢIU STAN

Figure 2. The Library Model

3 if(Satisfy (" cBook",ObjectNotNull ()))

4 {

5 DisplayObject (" cBook",editable=true ,

6 [(" Library Books", btnLibraryBooks)

7 (" Royalties",btnRoyalties)])

8 DisplayButton ("Back",btnBack)

9 DisplayButton ("Save",btnSave)

10 }

11 else

12 {

13 Redirect(MainPage)

14 }

15 }

16 btnLibraryBooks{

17 ReadObjectFromUI (" cBook")

18 Redirect(ManageLibraryBooks)

19 }

20 btnRoyalties{

21 ReadObjectFromUI (" cBook")

22 Redirect(ManageRoyalties)

23 }

24 btnBack{

25 EraseObject (" cBook")

26 Redirect(ManageBooks)

27 }

28 btnSave{

29 ReadObjectFromUI (" cBook")

30 SaveEntityToRepository ("cBook ")

31 EraseObject (" cBook")

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION DEVELOPMENT 69

32 Redirect(ManageBooks)

33 }

34 }

3.4. The Library web site. This section presents fragments from a demo
web site called Library that manages books, authors and members, and has
been developed using the proposed DSL. Also, parts of it have been developed
using WebML and WebDSL in order to be able to make a comparison between
our DSL and the others.

The conceptual model of the web site has been presented in the figure 2
for WebML and in the listing 6 for WebDSL. The conceptual model designed
using our DSL is presented into the listing 4.

Listing 6. Library Model in WebDSL

1 entity Book{ entity Author{

2 Title :: String FName:: String

3 ISBN :: String LName:: String

4 Price :: Double BDate:: String

5 Pages :: Int Royalties -> Set <Royalty >

6 Royalties -> Set <Royalty > }

7 LibraryBooks -> Set <LibraryBook >

8 }

9 entity LibraryBook { entity Royalty{

10 RealBook -> Book RBook -> Book

11 StockId :: String RAuthor -> Author

12 Value :: Double RAmount :: Double

13 Lends -> Set <Lend > }

14 }

15 entity Member { entity Lend {

16 FName :: String LMember :: Member

17 LName :: String LLibraryBook ->LibraryBook

18 BDate :: String LendDate :: DateTime

19 Sex:: String ReturnDate :: DateTime

20 Address :: String Days::Int

21 StartDate :: DateTime Fee:: Double

22 Dues:: Double }

23 Lends -> Set <Lend >

24 }

WebDSL offers the possibility to specify the kind of a relationship: (1)
reference => and (2) composite <>. The difference between reference and
composite property kinds is that composite indicates that the referred entity is

70 PAUL HORAŢIU STAN

part of the one referring to it. Deletion of the composite entity is also deleting
the referred entities.

WebML uses graphic diagrams for defining the static model of an appli-
cation. Unfortunately this graphic representation can confuse the developers
because it is not similar to UML. For instance the relationship one to many
in WebML is like the many to one in UML.

The proposed DSL does not offer the possibility to specify the association
between two entities as reference or composite like WebDSL, but this can be
added in a future version. In contrast with WebML, the proposed solution
does not produce confusions regarding associations between entities. Entities
are defined as classes in a GPL. Attributes of an entity are typed inside it’s
body, if an attribute is a collection of elements then after the attribute type
there is an *.

The behavioral model of the library web site can be expressed in WebDSL
using action code. Functions can be defined globally and as methods in enti-
ties. At this moment WebDSL model of an application can be translated only
to Java PSM.

The behavioral model of the library web site can be expressed in WebML
using units and links between them. The disadvantage of the WebML is that it
is very hard to maintain a model with many lines and boxes; for complex sites,
the model becomes a spaghetti picture. Current version of WebML supports
only transformations to Java. On the other hand, if new units need to be
defined, the developer should write the Java code which implements the unit
functionality.

The dynamic model specified with the proposed DSL is easily understand-
able and manageable. At this moment the eclipse plug-in works with the tex-
tual models but, as a feature improvement, a visual plug-in can be developed.
Unlike WebML, the model for complex systems, expressed using the proposed
textual DSL, does not become an unmanageable model. Unlike WebDSL the
proposed DSL does not allow developers to define methods inside the body
of an entity. This fact ensures that the static and dynamic models are not
mixed.

An advantage of our DSL compared with WebML and WebDSL is that it
has a simple syntax with few ”words”. The conceps presented in the proposed
DSL are structured in two main categories: concepts used to define static
model: Entities, Value Objects and Specifications, and conceps used to define
the behaviour of the system: Pages, Events and Statements. Due to this
simple syntax, it is easy for a developer to understand the language and to
quiqly ramp-up in an open project.

In contrast with both WebML and WebDSL, the PIMs described using the
proposed DSL can be easily translated to different PSMs such as .NET, Java,

A PROPOSED DSL FOR DATA INTENSIVE APPLICATION DEVELOPMENT 71

PHP, etc. It is in progress an implementation of a transformation engine to
PHP PSM of the models specified using the proposed DSL.

This is a short comparison of the proposed DSL withWebML andWebDSL,
the main target of this paper is to introduce the basic concepts of the new
DSL, a more complex comparison can be the subject of a future paper.

4. Conclusions and future work

The main contributions of this paper are: (1) a new DSL for data intensive
applications, (2) a textual representation of the proposed language and (3) a
transformation engine from the proposed PIM to .NET web application PSM.

The novelty of the proposed solution resides in: (1) proposing a set of basic
statements that can be easily translated to PSMs, (2) offering the possibility to
add and call external statements, (3) introducing the concept of specification
for defining validation rules for entities and value objects and (4) offering the
possibility to translate the PIM to different PSMs such as web, desktop and
mobile applications, all of these written in different programming languages.

The limitations of the proposed solution are: (1) it does not offer the
inheritance relationship between entities, (2) it is not possible to specify if an
association is container or reference, (3) a developer is not able to compose
statements into parent statements for modularizing the system.

All these will be subject of future developments.

5. Acknowledgment

The author wish to thank for the financial support provided from programs
co-financed by the SECTORAL OPERATIONAL PROGRAMME HUMAN
RESOURCES DEVELOPMENT, Contract POSDRU 6/1.5/S/3 “Doc-
toral studies: through science towards society”.

References

[1] OMG. Model Driven Architecture. http://www.omg.org/mda/specs.htm. Last ac-
cessed on December 10, 2011.

[2] Willian Massami Watanabe, David Fernandes Neto, Thiago Jabur Bittar, and Re-
nata P. M. Fortes. Wcag conformance approach based on model-driven development
and webml. In Proceedings of the 28th ACM International Conference on Design of
Communication, SIGDOC ’10, pages 167–174, New York, NY, USA, 2010. ACM.

[3] Danny Groenewegen, Zef Hemel, and Eelco Visser. Separation of concerns and linguis-
tic integration in webdsl. IEEE Softw., 27:31–37, September 2010.

[4] WebDSL. A domain-specific language for developing dynamic web applications with a
rich data model. http://webdsl.org. Last accessed on December 12, 2010.

[5] Debasish Ghosh, DSLs in Action, Manning Publications, 2010.

72 PAUL HORAŢIU STAN

[6] Stefano Ceri, Marco Brambilla, and Piero Fraternali. Conceptual modeling: Founda-
tions and applications. chapter The History of WebML Lessons Learned from 10 Years
of Model-Driven Development of Web Applications, pages 273–292. Springer-Verlag,
Berlin, Heidelberg, 2009.

[7] Guotao Zhuang and Junwei Du. Mda-based modeling and implementation of e-
commerce web applications in webml. In Proceedings of the 2009 Second International
Workshop on Computer Science and Engineering - Volume 02, IWCSE ’09, pages 507–
510, Washington, DC, USA, 2009, IEEE Computer Society.

[8] Eelco Visser Danny M. Groenewegen. Weaving web applications with webdsl: (demon-
stration). In Proceeding of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, pages 797–798, 2009.

[9] Danny M. Groenewegen, Zef Hemel, Lennart C.L. Kats, and Eelco Visser. Webdsl:
a domain-specific language for dynamic web applications. In Companion to the 23rd
ACM SIGPLAN conference on Object-oriented programming systems languages and
applications, OOPSLA Companion ’08, pages 779–780, New York, NY, USA, 2008.
ACM.

[10] Z. Hemel, L.C.L Kats, E. Visser Code Generation by Model Transformation. A Case
Study in Transformation Modularity, Delft University of Technology Software Engi-
neering Research Group 2008.

[11] Eelco Visser WebDSL: A Case Study in Domain-Specific Language Engineering, Delft
University of Technology Software Engineering Research Group 2008.

[12] Eric Evans, Domain-Driven Design Quickly, C4Media Inc 2006.
[13] Nathalie Moreno, Piero Fraternalli, and Antonio Vallecillo. A uml 2.0 profile for webml

modeling. In Workshop proceedings of the sixth international conference on Web engi-
neering, ICWE ’06, New York, NY, USA, 2006, ACM.

[14] Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. Bridging existing
web modeling languages to model-driven engineering: a metamodel for webml. In
Workshop proceedings of the sixth international conference on Web engineering, ICWE
’06, New York, NY, USA, 2006, ACM.

[15] K. Czarnecki. Overview of generative software development. In J.-P. Bantre et al.,
editors, Unconventional Programming Paradigms (UPP 2004), volume 3566 of Lecture
Notes in Computer Science, pages 313328, Mont Saint-Michel, France, 2005.

[16] Aldo Bongio Stefano Ceri, Piero Fraternali. Web Modeling Language (WebML): a mod-
eling language for designing Web sites, Politecnico di Milano, 2000.

Babeş Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca

E-mail address: horatiu@cs.ubbcluj.ro

