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A PRIMAL-DUAL INTERIOR POINT ALGORITHM FOR

CONVEX QUADRATIC PROGRAMS

MOHAMED ACHACHE AND MOUFIDA GOUTALI

Abstract. In this paper, we propose a feasible primal-dual path-following
algorithm for convex quadratic programs.At each interior-point iteration
the algorithm uses a full-Newton step and a suitable proximity measure
for tracing approximately the central path.We show that the short-step

algorithm has the best known iteration bound,namely O(
√
n log (n+1)

ε
).

1. Introduction

Consider the quadratic program (PQ) in standard format:

(P ) min
x

{
cTx+

1

2
xTQx : Ax = b, x ≥ 0

}
and its dual problem

(D) max
(x, y, z)

{
bT y − 1

2
xTQx : AT y + z −Qx = c, z ≥ 0

}
.

Here Q is a givenn× n real symmetric matrix,A is a givenm× n real matrix,
c ∈ Rn, b ∈ Rm,x ∈ Rn, z ∈ Rn and y ∈ Rm. The vectors x, y, z are the vectors
of variables.
Quadratic programs appear in many areas of applications. For example in fi-
nance (portfolio optimization) and also as subproblems in sequential Quadratic
Programming [1,5,6,10,11]. Interior point methods (IPMs) are among the most
effective methods to solve a large wide of optimization problems. Nowadays
most popular and robust methods of them are primal-dual path-following algo-
rithms due to their numerical efficiency and their theoretical polynomial com-
plexity [1,2,6-11]. The success of these algorithms for solving linear optimiza-
tion LO leads researchers to extend it naturally to other important problems
such as semidefinite programs SDP, quadratic programs QP, complementarity
CP and conic optimization problems COP.
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In this paper, we propose a feasible short-step primal-dual interior point
(IP) algorithm for convex quadratic programs. The algorithm uses at each
interior-point iteration a full-Newton step and a suitable proximity measure
for tracing approximately the central path. For its complexity analysis, we
reconsider the analysis used by many researchers for LO and we make it suit-
ing for CQP case. We show that the algorithm has the best known iteration

boundO(
√
n log (n+1)

ε ) which is analogous to LO.
The rest of the paper is organized as follows. In section 2, a feasible short-

step primal-dual IP algorithm for CQP is presented. In section 3,the complex-
ity analysis of the algorithm is discussed. In section 4, a conclusion is stated.

The notation used in this paper is:Rn denotes the space of n-dimensional
real vectors. Given x, y ∈ Rn, xT y =

∑n
i=1 xiyi is their usual scalar product

whereas xy = (x1y1, . . . , xnyn)T is the vector of their coordinate-wise prod-
uct. The standard 2-norm and the maximum norm for a vector x are denoted
by ‖x‖ and ‖x‖∞, respectively. Let x ∈ Rn,

√
x = (

√
x1, . . . ,

√
xn)T , x−1 =

(x−11 , . . . , x−1n )T if xi 6= 0 for all i and (xy ) = (x1y1 , . . . ,
xn
yn

)T for yi 6= 0. Let g(t)

and f(t) be two positive real valued functions, then g(t) = O(f(t)) ⇔ g(t) ≤
cf(t) for some c > 0. The vector of ones in Rn is denoted by e .

2. A primal-dual path following IP algorithm for CQP

Throughout the paper, we make the following assumptions on (P) and (D).
•The matrixA is of rank m (rg (A) = m < n).
• Interior-Point-Condition (IPC). There exists (x0, y0, z0) such that

Ax0 = b, AT y0 −Qx0 + z0 = c, x0 > 0, z0 > 0.

•The matrix Q is positive semidefinite,i.e., for all x ∈ Rn : xTQx ≥ 0 .
It is well-known under our assumptions that solving (P) and (D) is equivalent
to solve the Karush-Khun-Tucker optimality conditions for (P) and (D):

(1)

 Ax = b, x ≥ 0,
AT y + z −Qx = c, z ≥ 0,
xz = 0.

Now, by replacing the complementarity equation xz = 0 in (1) by the per-
turbed equation xz = µe, one obtains the following perturbed system:

(2)

 Ax = b, x ≥ 0,
AT y + z −Qx = c, z ≥ 0,
xz = µe,

with µ > 0. It is also known under our assumptions that the system (2) has a
unique solution for each µ > 0,denoted by (x(µ), y(µ), z(µ)),we call x(µ) the
µ−center of (P) and (y(µ), z(µ)) the µ−center of (D). The set of µ−centers



50 MOHAMED ACHACHE AND MOUFIDA GOUTALI

gives a homotopy path, which is called the central path of (P) and (D). If
µ goes to zero, then the limit of the central path exists and since the limit point
satisfies the complementarity condition, the limit yields an optimal solution for
(P) and (D). The notion of the central path has been studied by many authors
(see the books,e.g.[9] [10] and [11]).

Primal-dual path-following interior point algorithms are iterative methods
which aim to trace approximately the central path by using at each interior
iteration a feasible Newton step and get closer to a solution of (2) as µ goes to
zero, e.g. [6-11].

Now, we proceed to describe a full-Newton step produced by the algorithm
for a given µ > 0. Applying Newton’s method for (2) for a given feasible point
(x, y, z) then the Newton direction (∆x,∆y,∆z) at this point is the unique
solution of the following linear system of equations:

 A∆x = 0,
AT∆y + ∆z −Q∆x = 0,
x∆z + z∆x = µe− xz.

This last can be written as:

(3)

 A 0 0
−Q AT I
Z 0 X

 ∆x
∆y
∆z

 =

 0
0

µe−Xz

 ,

where X :=diag(x), Z :=diag(z) and I is the identity matrix of order n. The
format in (3) is suitable for numerical implementation. Hence an update full-
Newton step is given by x+ = x+ ∆x, y+ = y + ∆y and z+ = z + ∆z.
Now, we introduce a norm-based proximity as:

δ(xz;µ) =
1

2

∥∥∥∥∥∥
√(

xz

µ

)−1
−
√
xz

µ

∥∥∥∥∥∥ ,
to measure the closeness of feasible points to the central path. We use also a
threshold value β and we suppose that a strictly feasible point (x0, y0, z0) such
that δ(x0z0;µ0) ≤ β for certain µ0, is known. The details of the algorithm are
stated in the next subsection.
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2.1. Algorithm.

Input
An accuracy parameter ε > 0;
a threshold parameter 0 < β < 1 ( default β = 1√

2
);

a fixed barrier update parameter 0 < θ < 1 (default θ = 1
2
√
n

);

a strictly feasible (x0, y0, z0) and µ0 such that δ(x0z0;µ0) ≤ β;
begin

x := x0; y := y0; z := z0; µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
solve the system (3) to obtain: (∆x, ∆y,∆z);
update x = x+ ∆x, y = y + ∆y, z = z + ∆z;
end

end

Fig.1. Algorithm 2.1

One distinguishes IPMs as short-step when θ = O
(

1√
n

)
and large-step when

θ = O(1) .

3. Complexity analysis

In this section, we discuss the complexity analysis of Algorithm 2.1. For
convenience, we introduce the following notation. The vectors

v :=

√
xz

µ
, d :=

√
x

z
.

The vector d is used to scale the vectors x and z to the same vector v :

d−1x
√
µ

=
dz
√
µ

= v,

as well as for the original directions ∆x and ∆z to

dx :=
d−1∆x
√
µ

, dz :=
d∆z
√
µ
.

In addition, we have

(4) x∆z + z∆x = µv(dx + dz),

and

(5) ∆x∆z = µdxdz.
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By using these notations the linear system in (3) and the proximity become:

(6)


Ā dx = 0

Ā T∆y + dz − Q̄ dx = 0
dx + dz = v−1 − v,

where Ā =
√
µAD and Q̄ =

√
µDQD with D := diag (d) and

δ(xz;µ) := δ(v) =
1

2
‖v−1 − v‖.

Now observe that
dTx dz = dTx Q̄ dx ≥ 0,

since
dTx dz = dTx (Q̄dx − ĀTdy) = dTx Q̄dx ≥ 0,

with Ādx = 0 and Q̄ is positive semidefinite.
This last inequality shows that ∆x and ∆z are not orthogonal directions in con-
trast with LO case. Thus makes the analysis of the algorithm for CQP more
difficult.

Next, we need the following technical lemma that will be used later in the
analysis of the algorithm. For its proof the reader can refer to [Lemma C.4 in
8].

Lemma 3.1. Let (dx, dz) be a solution of (6) and if δ := δ(xz;µ) and µ >
0.Then one has

(7) 0 ≤ dTx dz ≤ 2δ2

and

(8) ‖dxdz‖∞ ≤ δ
2, ‖dxdz‖ ≤

√
2δ2 .

In the next lemmas, we state conditions which ensure the strict feasibility
of a full-Newton step.

Lemma 3.2. Let (x, z) be a strictly feasible primal-dual point. If

e+ dxdz > 0,

then x+ = x+ ∆x > 0 and z+ = z + ∆z > 0.

Proof. To show that x+ and z+ are positive, we introduce a step length
α ∈ [0, 1] and we define

xα = x+ α∆x, zα = z + α∆z.

So x0 = x,x1 = x+ and similar notations for z, hence x0z0 = xz > 0. We
have

xαzα = (x+ α∆x)(z + α∆z) = xz + α(x∆z + z∆x) + α2∆x∆z.
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Now by using (4),and (5) we get

xαzα = xz + α(µe− xz) + α2∆x∆z.

We assume that e + dxdz > 0, we deduce that µe + ∆x∆z > 0 which is
equivalent to ∆x∆z > −µe. By substitution we obtain

xαzα > xz + α(µe− xz)− α2µe

= (1− α)xz + (α− α2)µe

= (1− α)xz + α(1− α)µe.

Since xz and µe are positive it follows that xαzα > 0 for α ∈ [0, 1]. Hence, none
of the entries of xα and zα vanish for α ∈ [0, 1] .Since x0 and z0 are positive,
this implies that xα > 0 and zα > 0 for α ∈ [0, 1] .Hence, by continuity
the vectors x1 and z1 must be positive which proves that x+ and z+ are
positive. This completes the proof. 2

Now for convenience, we may write

v2+ =
x+z+
µ

and it is easy to have

v2+ = e+ dxdz.

Lemma 3.3. If δ := δ(x, z;µ) < 1.Then x+ > 0 and z+ > 0.

Proof. We have seen in Lemma 3.2, that x+ > 0 and z+ > 0 are strictly
feasible if e+ dxdz > 0. So e+ dxdz > 0 holds if 1 + (dxdz)i > 0 for all i. In fact
we have

1 + (dxdz)i ≥ 1− |(dxdz)i| for all i,

≥ 1− ‖dxdz‖∞
and by the bound in (9) it follows that

1 + (dxdz)i ≥ 1− δ2.

Thus e+ dxdz > 0 if δ < 1.This completes the proof. 2

The next lemma shows the influence of a full-Newton step on the proximity
measure.

Lemma 3.4. If δ(xz;µ) < 1.Then

δ+ := δ(x+z+, µ) ≤ δ2√
2(1− δ2)

.
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Proof. We have

4δ2+ =
∥∥v−1+ − v+

∥∥2
=

∥∥v−1+ (e− v2+)
∥∥2 .

But v2+ = e+ dxdz and v−1+ = 1√
e+dxdz

, then it follows that

4δ2+ =

∥∥∥∥ dxdz√
e+ dxdz

∥∥∥∥2 ≤ ‖dxdz‖2

1− ‖dxdz‖∞
.

Now in view of Lemma 3.1, we deduce that 4δ2+ ≤ 2δ4

1−δ2 .
This completes the proof. 2

Corollary 3.1. If δ := δ(xz;µ) < 1√
2
. Then δ+ ≤ δ2 which means the qua-

dratic convergence of the proximity measure during a full-Newton step.

In the next lemma, we discuss the influence on the proximity measure of
an update barrier parameter µ+ = (1− θ)µduring the Newton process along
the central path.

Lemma 3.5. If δ(xz;µ) < 1√
2

and µ+ = (1− θ)µ where 0 < θ < 1.Then

δ2(x+z+;µ+) ≤ (1− θ)δ2+ +
θ2(n+ 1)

4(1− θ)
+
θ

2
.

In addition if δ ≤ 1√
2
, θ = 1

2
√
n

and n ≥ 2, then we have:

δ(x+z+;µ+) ≤ 1√
2
.
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Proof. Let v+ =
√

x+z+
µ and µ+ = (1− θ)µ.Then

4δ2(x+z+;µ+) =

∥∥∥∥(√ µ+
x+z+

)
−
(√

x+z+
µ+

)∥∥∥∥2
=

∥∥∥∥√1− θv−1+ −
1√

1− θ
v+

∥∥∥∥2
=

∥∥∥∥√1− θ(v−1+ − v+)− θ√
1− θ

v+

∥∥∥∥2
= (1− θ)

∥∥v−1+ − v+
∥∥2 +

θ2

1− θ
‖v+‖2 − 2θ(v−1+ − v+)T v+

= (1− θ)
∥∥v−1+ − v+

∥∥2 +
θ2

1− θ
‖v+‖2 − 2θ(v−1+ )T v+ + vT+v+

= 4(1− θ)δ2+ +
θ2

1− θ
‖v+‖2 − 2θn+ 2θ ‖v+‖2 ,

since (v−1+ )T v+ = n and v+
T v+ = ‖v+‖2. Now, recall that δ2+ ≤ δ4

2(1−δ2) .Then

4δ2(x+z+;µ+) ≤ 4(1− θ) δ4

2(1− δ2)
+

θ2

1− θ
‖v+‖2 − 2θn+ 2θ ‖v+‖2 .

Finally, since

xT+z+ = µn+ µdTx dz,

and if δ < 1√
2
, it follows by (8) in Lemma 3.1 that

‖v+‖2 =
1

µ
xT+z+ ≤ (n+ 1),

and consequently

4δ2(x+z+, µ+) ≤ 4(1− θ) δ4

2(1− δ2)
+
θ2(n+ 1)

1− θ
− 2θn+ 2θ(n+ 1)

and

δ2(x+z+;µ+) ≤ (1− θ)δ2+ +
θ2(n+ 1)

4(1− θ)
+
θ

2
.

For the last statement the proof goes as follows. If δ < 1√
2
, then δ2+ < 1

4 and

this yields the following upper bound for δ2(x+z+;µ+) as:

δ2(x+z+;µ+) ≤ (1− θ)
4

+
θ2(n+ 1)

4(1− θ)
+
θ

2
.
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Now, taking θ = 1
2
√
n

then θ2 = 1
4n , it follows that:

δ2(x+z+;µ+) ≤
1
4n(n+ 1)

4(1− θ)
+
θ

2
+

(1− θ)
4

,

and since n+1
4n ≤

3
8 for all n ≥ 2,then we have:

δ2(x+z+;µ+) ≤ 3

32(1− θ)
+
θ

2
+

(1− θ)
4

.

Now for n ≥ 2,we have 0 ≤ θ ≤ 1
2
√
2

and since the function

f(θ) =
3

32(1− θ)
+

(1− θ)
4

+
θ

2

is continuous and monotonic increasing on 0 < θ < 1
2
√
2
, consequently

f(θ) ≤ f
(

1

2
√

2

)
≈ 0.48341 <

1

2
, for all θ ∈

[
0,

1

2
√

2

]
.

Hence δ(x+z+;µ+) < 1√
2

and the algorithm is well-defined. This completes the

proof.
In the next lemma we analyze the effect of a full-Newton step on the duality
gap.

Lemma 3.6. Let δ := δ(xz;µ) < 1√
2

and x+ = x+∆x and z+ = z+∆z. Then

the duality gap satisfies

(9) xT+z+ ≤ µ(n+ 1).

Proof. It follows straightforwardly from the proof in Lemma 3.5. 2

In the next lemma we compute a bound for the number of iterations of
Algorithm 2.1.

Lemma 3.7. Let xk+1 and zk+1be the (k + 1)-th iteration produced by Algo-
rithm 2.1 with µ := µk.Then

(xk+1)T zk+1 ≤ ε
if

k ≥
[

1

θ
log

µ0(n+ 1)

ε

]
.

Proof. It follows form the bound(10) in Lemma 3.6 that:

(xk+1)T zk+1 ≤ µk(n+ 1)

with
µk = (1− θ)µk−1 = (1− θ)kµ0.
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Then it follows that:

(xk+1)T zk+1 ≤ (1− θ)kµ0(n+ 1).

Thus the inequality (xk+1)T zk+1 ≤ ε is satisfied if

(1− θ)kµ0(n+ 1) ≤ ε.
Now taking logarithms of (1− θ)kµ0(n+ 1) ≤ ε, we may write

k log(1− θ) ≤ log ε− logµ0(n+ 1)

and using the fact that log (1−θ) ≤ θ, for 0 ≤ θ < 1 then the above inequality
holds if

kθ ≥ logµ0(n+ 1)− log ε = log
(n+ 1)µ0

ε
.

This completes the proof. 2

For θ = 1
2
√
n
,we obtain the following theorem

Theorem 3.1. Let θ = 1
2
√
n
. Then Algorithm 2.1 requires at most

O

(√
n log

(n+ 1)µ0

ε

)
iterations.

Proof. By replacing θ = 1
2
√
n

in Lemma 3.7, the result holds. 2

4. Conclusion and future works

In this paper, we have proposed a feasible short-step primal-dual inte-
rior point algorithm for solving CQP. The algorithm deserves the best well-

known theoretical iteration bound O(
√
n log (n+1)

ε ) when the starting point is
x0 = z0 = e.This choice of initial point can be done by the technique of em-
bedding. Future research might extended the algorithm for other optimization
problems and its numerical implementation is also an interesting topic.
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