
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 1, 2012

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL

PROGRAMMING LANGUAGES

VILIAM SLODIČÁK, VALERIE NOVITZKÁ

Abstract. In this paper we present a short introduction into foundations
of action semantics and its application in functional paradigm. We discuss
the use of action semantics for functional paradigm. The obtained results
are demonstrated on the particular well-known example from informatics -
the Fibonacci numbers. The computation of Fibonacci numbers has been
implemented in the object-oriented functional language OCaml and the
description of the program is given in action semantics.

1. Introduction

Action semantics is one of the newest methods for defining the meaning of
constructions of the programming languages. Formal definition of program-
ming language is an inseparable part of the definition of every programming
language. It allows us to understand the behavior of programs by unambigu-
ous way. Traditional methods - an operational and denotational semantics
belong in the group of the most used semantical methods. The operational
semantics (a semantics of small steps) plays a crucial rôle in implementation
of the programming language, because it concerns the details of the program
execution. Denotational semantics, often called also mathematical semantics,
expresses the meaning of programs by functions over the mathematical struc-
tures (domains). It has been used in the design of programming languages,
but its mathematical complexity is quite hard for IT experts to understand.
The action semantics avoids the disadvantages of the former methods. It arises
from the denotational semantics but it provides the meaning of programs by
user-friendly style. It uses English phrases so the definitions of semantics of

Received by the editors: February 4, 2012.
2010 Mathematics Subject Classification. 68Q55.
1998 CR Categories and Descriptors. F.3.2 [Logics and meanings of programs]:

Semantics of Programming Languages – Partial evaluation; D.3.3 [Programming lan-
guages]: Language Constructs and Features – Recursion.

Key words and phrases. Action semantics, functional paradigm, actions, semantical
description.

35

36 VILIAM SLODIČÁK, VALERIE NOVITZKÁ

the program constructions are more readable. Action semantics is fully equiv-
alent with other semantical methods, such as denotational semantics, natural
semantics, operational semantics or axiomatic semantics [8].
Until now the action semantics has been defined for the imperative languages.
But its principles are also appropriate for defining the semantics of the lan-
guages of functional paradigm. In our article, we present the principles of
action semantics for the new functional object-oriented language - OCaml
[1, 4]. The results obtained are demonstrated on the example of computation
the Fibonacci numbers where we apply the results from the previous works
[13, 14] about the recursion. In the section 2 we describe fundamentals of
action semantics. In the next section we formulate some basic principles of
action semantics in functional paradigm. The last section presents an example
of applying the action semantics in functional paradigm.

2. Basic notions about Action semantics

The framework of action semantics [7] was initially developed at the Uni-
versity of Aarhus by Peter D. Mosses, in collaboration with David Watt from
University of Glasgow. One of its main advantages over other frameworks is
pragmatic: action-semantic descriptions can scale up easy to real programming
languages [10, 16]. Action semantics deals with the three kinds of semantic
entities: actions, yielders and data. Fundamentals of action semantics are
actions which are essentially dynamic computational entities. They represent
the computational behavior by using the values passed to them to generate
new values that reflect changes in the state of the computation. In other
words - the performance of an action directly represents the information of
processing the behavior and reflects the gradual step-wise nature of computa-
tion: each step of an action performance may access and/or change the current
information.

Other semantic entities used in action semantics are yielders and data.
The information processed by actions consists of items of data, organized in
structures that give access to the individual items. Data could contain:

• mathematical entities (e.g. truth values, numbers, characters, strings,
lists, sets, and maps);
• computational entities (tokens and cells);
• compound entities (messages and contracts).

Yielders are another entities; they can be evaluated to yield data during
action performance. The data yielded may depend on the current information:

• the given transients;
• the received bindings;

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL LANGUAGES 37

• the current state of the storage (not applied in functional program-
ming).

The actions are main kind of entities; the yielders and data are subsidiary.
The notation used for specifying actions and the subsidiary semantic entities is
called action notation [7]. In action semantics, the semantics of a programming
language is defined by decomposition of program phrases to actions. The
performance of these actions relates closely to the execution of the program
phrases. Primitive actions can store data in storage cells, bind identifiers to
data, compute values, test truth values, etc. [11].

A performance of an action which may be a part of an enclosing action
either:

• completes, corresponding to normal termination;
• escapes, corresponding to exceptional termination;
• fails, corresponding to abandoning an alternative;
• diverges, corresponding to deadlock.

2.1. Action semantics facets. The different kinds of information give rise
to the so called facets of actions which have been classified according to [7].
They are focusing on the processing of at most one kind of information at a
time:

• the basic facet, processing independently of information (control flows);
• the functional facet, processing transient information (actions are given

and give data);
• the declarative facet, processing scoped information (actions receive

and produce bindings);
• the imperative facet, processing stable information (actions reserve and

dispose cells of storage, and change the data stored in cells);
• the communicative facet, processing permanent information (actions

send messages, receive messages in buffers, and offer contracts to agents)
[7].

2.2. Action notation and combinators. The standard notation for speci-
fying actions consists of primitive actions and action combinators. Examples
of action combinators are depicted on the following figures: action combinator
and (Fig. 1), action combinator and then (Fig. 2), action combinator then

(Fig. 3) and action combinator or (Fig. 4). In diagrams, the scoped infor-
mation flows from left to the right whereas transients flow from top to the
bottom.

• A1 and A2 (Fig. 1) allows the performance of the two actions to be
interleaved. No control dependency in diagram, so actions can be
performed collaterally.

38 VILIAM SLODIČÁK, VALERIE NOVITZKÁ

• A1 and then A2 (Fig. 2) performs the first action and then performs
the second one.
• A1 then A2 (Fig. 3) performs the first action using the transients

given to the combined action and then performs the second action
using the transients given by the first action. The transients given by
the combined action are the transients given by the second action.
• A1 or A2 (Fig. 4) arbitrarily chooses one of the subactions and per-

forms it with given transients and received bindings. If the chosen
action fails, it perform the other subaction with original transients
and bindings.

A1

A2

transients

transients

bindingsbindings

Figure 1. Action combinator A1 and A2

The data entities consist of mathematical values, such as integers, Boolean
values, and abstract cells representing memory locations, that embody par-
ticles of information. Sorts of data used by action semantics are defined by
algebraic specifications. Yielders encompass unevaluated pieces of data whose
values depend on the current information incorporating the state of the com-
putation. Yielders occur in actions and may access, but they can not change
the current information.

The standard notation for specifying actions consists of primitive actions
and action combinators. Action combinators combine existing actions, nor-
mally using infix notation, to control the order which subactions are performed
in as well as the data flow to and from their subactions. Action combinators
are used to define sequential, selective, iterative, and block structuring con-
trol flow as well as to manage the flow of information between actions. The

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL LANGUAGES 39

A1

A2

transients

transients

bindingsbindings

complete

Figure 2. Action combinator A1 and then A2

A1

A2

transients

bindingsbindings

transients

complete

Figure 3. Action combinator A1 then A2

standard symbols used in action notation are ordinary English words. In fact,
action notation is very near to natural language:

• terms standing for actions form imperative verb phrases involving con-
junctions and adverbs, e.g. check it and then escape;
• terms standing for data and yielders form noun phrases, e.g. the

items of the given list.

These simple principles for choice of symbols provide a surprisingly grammat-
ical fragment of English, allowing specifications of actions to be made fluently
readable. The informal appearance and suggestive words of action notation

40 VILIAM SLODIČÁK, VALERIE NOVITZKÁ

Ak

A3−k

transients

transients

bindings

bindings

transients

bindings

fail

Figure 4. Action combinator A1 or A2 (for k = 1 or k = 2)

should encourage programmers to read it. Compared to other formalisms,
such as λ-notation, action notation may appear to lack conciseness: each sym-
bol generally consists of several letters, rather than a single sign. But the
comparison should also take into consideration that each action combinator
usually corresponds to a complex pattern of applications and abstractions in
λ-notation. In any case, the increased length of each symbol seems to be far
outweighed by its increased perspicuity.

3. Action semantics in functional paradigm

Action semantics can be successfully used also for the description of func-
tional programs [15]. In action semantics we use generally three main actions
for the description of programming languages:

• executeJstatementK - used for executing of statements;
• elaborateJdeclarationK - used with declarations;
• evaluateJexpressionK - used for evaluating expressions.

In functional paradigm we use only two main actions: evaluate and elaborate.
Action execute is not used in functional paradigm; it is a standard action for
imperative paradigm. Typical for functional programs is that they do not deal
the storage. Therefore we will not use actions of imperative facet for allocating
memory locations, storing values and getting values from cells in memory in
our action semantics descriptions of functional programs.
The actions evaluate and elaborate we usually use in the form

evaluateJeKs [n 7→ val0] ,

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL LANGUAGES 41

where e is an expression to be evaluated in the input state denoted s where n
has the value val0.
Important for functional paradigm is the evaluation of the expressions and
the elaboration of the functions. To allow referring them in the program code,
they are associated to names (identifiers). These associations are called bind-
ings. A binding can be global, when declared at the top level of the source
code, or local, when declared in a let or letrec expressions that contain it. The
difference between let and letrec expressions is that in the latter one a mutual
recursion is allowed. We provide this description of evaluation of simple ex-
pression:

elaborateJlet I:Var = E:ExpressionK =
evaluate J E K

then bind I to the given value

After declaration we are able to use it anytime in our program. The value is
bound to its identifier, so we can get the value of this expression simply by
using evaluate action:

evaluateJ I:Var K =
give the value bound to I

Description of a function with one argument should seem like this:

elaborateJlet If:Var Ip1:Var = E:ExpressionK =
evaluateJEK

then bind If to the given value

In the expression E the parameter of the function is used. The value of the
function we can get simply by action evaluate:

evaluateJ Ip1:Var K =
give the value bound to Ip1

General definition for a function with two or more arguments:
elaborateJlet If:Var < Ip:Var >

+ = E:ExpressionK =
evaluateJEK

then

bind If to the given value

3.1. Related work. In 1997, S. B. Lassen started to develop the functional
part of a theory of action semantics for reasoning about programs. Action

42 VILIAM SLODIČÁK, VALERIE NOVITZKÁ

notation, the specification language of action semantics, was given an evalua-
tion semantics, and operational techniques from process theory and functional
programming have been applied in the development of a versatile action the-
ory [3]. Peter D. Mosses showed in [6] the functional action notation which
has extended the basic action notation and data notation with a few primitive
actions, one new combinator and some notation for yielders. This notation
belongs to the group of languages based on composition of functions, without
exlicit mention of arguments, such as FP. But there is also another group of
functional languages based on application of functions to arguments, such as
Standard ML. On the other hand, David A. Watt presented in [17] an action-
semantics description of Standard ML, as evidence for the claimed merits of
action semantics.

4. Example

We present the description of functional program in action semantics at the
well-known algorithm: Fibonacci numbers. In mathematics, the Fibonacci
numbers are the numbers in the integer sequence where the first two Fibonacci
numbers are 0 and 1 (sometimes first two Fibonacci numbers are considered 1
and 1), and each subsequent number is the sum of the previous two [2, 5, 12].
The construction of the sequence of Fibonacci numbers is as follows:

• F0 = 0, sequence is (0);
• F1 = 1, sequence is (0, 1);
• F2 = F0 + F1 = 0 + 1 = 1, sequence is (0, 1, 1);
• F3 = F1 + F2 = 1 + 1 = 2, sequence is (0, 1, 1, 2);
• F4 = F2 + F3 = 1 + 2 = 3, sequence is (0, 1, 1, 2, 3);
• F5 = F3 + F4 = 2 + 3 = 5, sequence is (0, 1, 1, 2, 3, 5);
• etc. . . .

In mathematical terms we define the Fibonacci sequence by the linear recursive
function:

Fn =

 1 if n = 0;
1 or n = 1;
Fn−1 + Fn−2 otherwise (n > 1).

The recursive function for the calculation of Fibonacci numbers is based on
the ”Divide et Impera” method. In the language OCaml it has the form:

l e t r e c fibDnC (n) =

i f (n==0 | | n==1)

then 1

e l s e

fibDnC (n−1) + fibDnC (n−2) ; ;

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL LANGUAGES 43

4.1. Description in action semantics. We use a substitution for the term
that calculates the Fibonacci number.

Let expression E be:

E = if (n == 0 || n == 1) then 1 else fibDnC(n− 1) + fibDnC(n− 2).

Next we elaborate the function fibDnC(n)

elaborate J let rec fibDnC (n) = EK =
recursively bind fibDnC to

closure of

abstraction of

evaluateJEK =

recursively bind fibDnC to

closure of

abstraction of

evaluateJnK
and then

give the TruthV alue of
(the given number is equal to the number 0
or

the given number is equal to the number 1)
then

check the given TruthV alue
and then

give the number 1
or

check not the given TruthV alue
and then

give the sum of

(elaborateJfibDnC(n− 1)K
and

elaborateJfibDnC(n− 2)K)

The value of argument given by expression n in function fibDnC(n) we get
in the action evaluate:

evaluate JnK =
give the value bound to n

where the value of the input expression is simply evaluated and returned as
output value.

44 VILIAM SLODIČÁK, VALERIE NOVITZKÁ

4.2. The description of an example in Action semantics. We show
a partial elaboration of the function fibDnC(n) in the state for the input
argument n = 5.

elaborate JfibDnC (n) = EKs [n 7→ 5] =
give the value bound to

closure of

abstraction of

evaluateJEKs [n 7→ 5] =

give the value bound to

closure of

abstraction of

give the number 5

and then

give the TruthV alue of
(the given number is equal

to the number 0
or

the given number is equal

to the number 1)
then

check not the given TruthV alue
and then

give the sum of

(elaborateJfibDnC(n)Ks [n 7→ 4]
and

elaborateJfibDnC(n)Ks [n 7→ 3])

Next step is the elaboration of the function for the input values n = 4 and
n = 3.

The elaboration of the function fibDnC(n) is given by recursive evaluation
of the Fibonacci numbers calculation. Here we omit some steps and show only
the final step after evaluation of the given terms. Here, in the final step of
description the function fibDnC(n) is being called with the input value n = 0.

elaborate JfibDnC (n) = EKs [n 7→ 0] =
give the value bound to

closure of

abstraction of

evaluateJEKs [n 7→ 0] =

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL LANGUAGES 45

give the value bound to

closure of

abstraction of

give the number 0

and then

give the TruthV alue of
(the given number is equal

to the number 0
or

the given number is equal

to the number 1)
then check the given TruthV alue

and then give the number 1

In the following description we replaced the clause the given number with
the concrete values by reason of showing partial results in the evaluation.

give the value bound to

closure of

abstraction of

give the sum of

(the number 1 and the number 1)
and then

give the sum of

(the number 2 and the number 1)
and then

give the sum of

(the number 3 and the number 2)
and then

give the sum of

(the number 5 and the number 3) =

give the value bound to

closure of

abstraction of

give the number 8

The result of the function fibDnC(n) for the input value n = 5 is equal
to 8.

46 VILIAM SLODIČÁK, VALERIE NOVITZKÁ

5. Conclusion

In this article we have formulated new application area of action seman-
tics for functional programming languages. We presented our approach on
the Fibonacci numbers computation function which is traditionally used for
illustration of the recursion in functional programming [9].

In the future we extend our approach to the object-oriented features of
functional programming language OCaml and to construct a categorical form
of action semantics which can be useful to observe the behavior of functional
programs in coalgebraic terms.

Acknowledgement

This work has been supported by the Slovak Research and Development Agency
under the contract No. APVV-0008-10: Modelling, simulation and implemen-
tation of GPGPU-enabled architectures of high-throughput network security
tools.

References

[1] Hickey, J. Introduction to Objective Caml. Cambridge University Press, 2008.
[2] Koubková, A., and Pavelka, J. Introduction to theoretical informatics. MatFyzPress,

Charles University, Prague, 2005. (in Czech).
[3] Lassen, S. Action semantics reasoning about functional programs. Journal Mathemat-

ical Structures in Computer Science Vol. 7, Issue 5 (October 1997).
[4] Leroy, X. The objective caml system release 3.12. documentation and user’s manual.

Tech. rep., Institut National de Recherche en Informatique et en Automatique, 2008.
[5] Matoušek, J., and Nešetřil, J. Kapitoly z diskrétńı matematiky. Nakladatelstv́ı

Karolinum, Praha, Univerzita Karlova v Praze, 2000.
[6] Mosses, P. Action Semantics. Cambridge University Press, 2005.
[7] Mosses, P. D. Theory and practice of action semantics. In In MFCS ’96, Proc. 21st

Int. Symp. on Mathematical Foundations of Computer Science (1996), Springer-Verlag,
pp. 37–61.

[8] Nielson, H. R., and Nielson, F. Semantics with Applications: A Formal Introduction.
John Wiley & Sons, Inc., 2003.

[9] Nilsson, H., Ed. Trends in Functional Programming, vol. 7. Intellect Books, 2007.
[10] Planas, E., Cabot, J., and Gómez, C. Verifying action semantics specifications in

uml behavioral models. In Proceedings of the 21st International Conference on Advanced
Information Systems Engineering (Berlin, Heidelberg, 2009), CAiSE ’09, Springer-
Verlag, pp. 125–140.

[11] Ruei, R., and Slonneger, K. Semantic prototyping: Implementing action semantics
in standard ML. The University of Iowa, 1993.

[12] Sedláček, J. Úvod do teorie graf̊u. Academia, Praha, 1981.
[13] Slodičák, V., and Macko, P. How to apply linear logic in coalgebraical approach

of computing. In Proceedings of the 22nd Central European Conference on Information
and Intelligent Systems, September 21-23, 2011, Varaždin, Croatia (2011), University
of Zagreb, pp. 373–380. ISSN 1847-2001.

PRINCIPLES OF ACTION SEMANTICS FOR FUNCTIONAL LANGUAGES 47

[14] Slodičák, V., and Macko, P. New approaches in functional programming using alge-
bras and coalgebras. In European Joint Conferrences on Theory and Practise of Software
- ETAPS 2011 (March 2011), Workshop on Generative Technologies, Universität des
Saarlandes, Saarbrücken, Germany, pp. pp. 13–23. ISBN 978-963-284-188-5.

[15] Slodičák, V., and Macko, P. Some new approaches in functional programming using
algebras and coalgebras. Electronic Notes in Theoretical Computer Science Vol. 279,
Issue 3 (2011), pp. 41–62.

[16] Stuurman, G. Action semantics applied to model driven engineering, November 2010.
University of Twente.

[17] Watt, D. An action semantics of standard ml. Lecture Notes in Computer Science Vol.
298/1988 (1988).

Faculty of Electrical Engineering and Informatics, Technical University
of Košice, Slovak Republic

E-mail address: viliam.slodicak@tuke.sk, valerie.novitzka@tuke.sk

