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Abstract. In this paper a membrane-immune algorithm is proposed,
which is inspired from the structure of living cells and the vertebrate im-
mune system. The algorithm is used to solve one of the most famous combi-
natorial NP-complete problems, namely the Multiple Zero/One Knapsack
Problem. Various heuristics, like genetic algorithms, have been devised
to solve this class of combinatorial problems. The proposed algorithm is
compared with two genetic based algorithms and overcame both of them.
The algorithm is evaluated on nine benchmarks test problems and sur-
passed both of the genetic based algorithms in six problems, equaled with
one of them in two problems and lost in one problem, which indicates
that our algorithm surpasses in general genetic algorithms. We claim that
the proposed algorithm is very useful in solving similar combinatorial NP-
complete problems.

1. Introduction

Membrane computing is a branch of natural computing which investigates
computing models abstracted from the structure and the functioning of living
cells and from their interactions in tissues or higher order biological structures.

Membrane Computing was introduced by Gh. Paun in [6] under the as-
sumption that the processes taking place in the compartmental structure of a
living cell can be interpreted as computations. The devices of this model are
called P systems. A P system consists of a membrane structure, in the com-
partments of which one places multi-sets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel man-
ner. The basic idea is to consider a distributed and parallel computing de-
vice structured in an arrangement of membranes which delimit compartments
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where various chemicals (objects in our case) evolve according to local reaction
rules. The objects can be eventually sent to the environment or to adjacent
membranes under the control of specific rules. The reaction rules are applied
in a parallel manner, with the objects to evolve by them and with the reactions
themselves chosen in a non-deterministic manner. In this way, we can define
transitions from one configuration to another configuration of our system and
hence we can define computations [7]. A computation provides a result, for
instance, in the form of the number of objects present in the halting config-
uration in a specified compartment, or in the form of a special object, yes or
no, sent to the environment at the end of the computation, this is the way of
answering a decision problem that the system had to solve. An abstraction of
membrane structure is depicted in figure 1.

Figure 1. the membrane structure.

This paper suggests a membrane-immune algorithm which is an approxi-
mate algorithm for NP-complete optimization problems, the membrane-immune
algorithm borrows nested membrane structures, rules in membrane separated
regions, transporting mechanisms through membranes from P systems and
the cloning selection principle which is imported from the vertebrate immune
system and uses all these ingredients in solving NP-complete optimization
problems approximately. We evaluated the proposed algorithm by applying it
to one of the most famous NP-complete problems, the multiple 0/1 knapsack
problem. The paper is organized as follows. Section 2 describes the multi-
ple 0/1 knapsack problem, in section 3 an explanation of the clonal selection
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principle is given, section 4 explains in detail the proposed algorithm and the
experimental results, finally conclusions and some remarks are discussed in
section 5.

2. The Multiple Zero/One Knapsack Problem

The problem we study here is a generalization of the 0/1 simple knapsack
problem. In the simple version, we are given a knapsack of capacity c, and n
objects. Each object has a weight wi, and a profit pi, 1 ≤ i ≤ n, The objective
is filling the knapsack with the objects that yield the maximum profit without
firing the capacity constraint. The problem is also known as the single-line
integer programming problem [3, 4].

The multiple 0/1 knapsack problem consists of m knapsacks of capacities
c1, c2,...,cm and n objects, each of which has a profit pi, 1 ≤ i ≤ n. Unlike
the simple version in which the weights of the objects are fixed, the weight of
the ith object in the multiple knapsack problem takes j values, 1 ≤ j ≤ m.
The ith object weighs wij when it is considered for possible inclusion in the

jth knapsack of capacity cj . The objective is finding a vector
→
x=(x1, x2,...,

xn) that guarantees that profit is maximized and in the same time takes into
consideration that no knapsack is overfilled.

This problem is also known as the zero/one integer programming problem
[12], and as the 0/1 linear Programming problem [14]. The multiple 0/1
knapsack problem can be thought as a resource allocation problem, where we
have m resources (the knapsacks) and n objects. Each resource has its own
budget (knapsack capacity), and wij represents the consumption of resource
j by object i. Once more, we are interested in maximizing the profit, while
working within a certain budget.

The popularity of knapsack problems stems from the fact that it has at-
tracted theoreticians as well as practitioners [14]. Theoreticians enjoy the fact
that these simple structured problems can be used as sub-problems to solve
more complicated ones, practitioners on the other hand, enjoy the fact that
these problems can model many industrial opportunities such as cutting stock,
cargo loading, and the capital budget. Table 1 gives a formal definition of the
multiple 0/1 knapsack problem.

2.1. Related Work. P systems are parallel molecular computing models
based on processing multisets of objects in cell-like membrane structures. In
[9] a membrane algorithm used to solve the multidimensional 0-1 knapsack
problem in linear time is given. The algorithm uses P system recognizers with
input and with active membranes using two-divisions. This algorithm can
also be modified to solve general 0-1 integer programming problem. In [11]
the Knapsack problem is solved using a family of deterministic P systems with
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active membranes using two-divisions. The number of steps of any computa-
tion is of linear order, but a polynomial time is required for pre-computing
resources.

The works in [9, 11] use membrane computing to generate the whole ex-
ponential search space, then apply an exhaustive search to find the global
optimal solution. Until now membrane algorithms have no real implementa-
tion and still in its infancy form. Researchers till the moment do not have a
precise conception about implementation of p systems, an in vitro, in vivo or
in silico implementation. Our algorithm differs from the two works previously
mentioned that it produces an approximate accepted solutions and can be
implemented in the current silicon based computers, and easily can run using
parallel or grid computing.

Table 1. The multiple 0/1 knapsack problem formalization

knapsacks: 1, 2, ...,m
capacities: c1, c2, ..., cm
objects: 1, 2, ..., n
profits: P1, P2, ..., Pn

Weights:

KS1 : w11, w12, ..., w1n

KS2 : w21, w22, ..., w2n

..................
KSm : wm1, wm2, ..., wmn

Feasible solution:
→
x=(x1,..., xn), xi ∈ {0, 1}, s.t.

∑n
i=1wijxi ≤ cj , 1 ≤ j ≤ m

Affinity function: Maximize
∑n

i=1 Pixi
Optimal solution: A feasible solution that gives the maximum profit

3. The Clonal selection principle

The clonal selection principle is an algorithm used by the immune system
to describe the basic features of an immune response to an antigenic stimulus.
An abstraction of clonal selection principle [10] is described in figure 2.

The principle establishes the idea that only those cells that recognize the
antigens are those with high ratio proliferate. Clonal selection operates on
both T cells and B cells. The immune response occurs inside the lymph
nodes. When an animal is exposed to an antigen, some subpopulation of its
bone marrow’s derived cells (B lymphocytes) respond by producing antibodies.
Each cell secretes only one kind of antibody, which is relatively specific for
the antigen. By binding to these immune receptors, with a second signal
from accessory cells, such as the T-helper cell, an antigen stimulates the B
cell to proliferate (divide) and mature into terminal (non-dividing) antibody
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secreting cells, called plasma cells. While plasma cells are the most active
antibody secretors, large B lymphocytes, which divide rapidly, also secrete
Ab, albeit at a lower rate. While B cells secrete Ab, T cells do not secrete
antibodies, but play a central role in the regulation of the B cell response
and are core in cell mediated immune responses. Lymphocytes, in addition
to proliferating or differentiating into plasma cells, can differentiate into long-
lived B memory cells. Memory cells circulate through the blood, lymph and
tissues, probably not manufacturing antibodies, but when exposed to a second
antigenic stimulus commence differentiating into large lymphocytes capable of
producing high affinity antibody, preselected for the specific antigen that had
stimulated the primary response. The main features of the clonal selection
theory [5] are:

• The new cells are copies of their parents (clone) subjected to a muta-
tion mechanism with high rates (somatic hypermutation);
• Elimination of newly differentiated lymphocytes carrying self-reactive

receptors;
• Proliferation and differentiation on contact of mature cells with anti-

gens;
• The persistence of forbidden clones, resistant to early elimination by

self-antigens, as the basis of autoimmune diseases.

Figure 2. The clonal selection principle.
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The fittest clones are the ones that best recognize antigens or, more pre-
cisely, the ones that are triggered best. For this algorithm to work, the recep-
tor population or repertoire has to be diverse enough to recognize any foreign
shape. A mammalian immune system contains a heterogeneous repertoire of
approximately 1012 lymphocytes in human, and a resting (unstimulated) B cell
may display around 105−107 identical antibody-like receptors. The repertoire
is believed to be complete, which means that it can recognize any shape of an
antigen [10].

4. The Membrane-Immune Algorithm and Experimental Results

The membrane-immune algorithm depicted in figure 3 is described below
as Pseudocode.

1. Begin

2. Initialize the initial repertoire R randomly;

3. Identify the affinity measure;

4. Validate repertoire;

5. While (condition) do

6. Begin

7. For each P system in R.

8. Begin

9. a. Perform mutation over all solutions in each compartment;

10. b. In every region, the best and worst solutions are sent

to the adjacent inner and outer regions, respectively;

11. End;

12. Perform Clonal/Negative Selection according affinity;

13. Metadymanics;

14. End;

15. End;

In the following subsections an explanation of how the algorithm is working
in detail is given.

4.1. The Algorithm Structure. The repertoire here is a set of P systems,
each one consists of set of nested membranes, each region has a set of solutions
and a simple mutation algorithm that mutates all solutions in this region, as
depicted in figure 4. These solutions are initialized randomly.

In every region there are a few solutions of the optimization problem to
be solved and a mutation algorithm works on them. After the initial set-
tings all solutions are updated by the mutation algorithm placed in regions,
simultaneously, in every region, the best and worst solutions, with respect to
the optimization criterion, are sent to the adjacent inner and outer regions,
respectively. The best solution exists in the innermost region of a P system.

The process of updating and transporting solutions is repeated until a
termination condition is satisfied. In our implementation a fixed number of
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Figure 3. How the membrane-immune algorithm works, u
represents the repertoire size; v represents how many times
the cloning selection principle is applied.

iterations is used as a termination condition as explained in the algorithm
setting, see subsection 4.8.

Figure 4. The Structure of repertoire’s single p system.

4.2. Repertoire Initialization. All generated p systems’ initial solutions
are feasible. This means that all the generated solutions satisfy the knapsack
constraints, and all subsequently infeasible individuals were made feasible by
dropping some items randomly from the knapsacks until feasibility is obtained.

It might be allowed to let a p system to contain infeasible individuals
(representing invalid solutions), to increase the variation of solutions. The
infeasible individuals are often penalized so as to means lower affinity when
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comparing to other feasible solution. According to [1] it does not indicate that
it gives any benefit to allow infeasible solutions to be included, so we did not
permit infeasibility of solutions in our implementation.

4.3. The affinity measure. The affinity measure for a solution is the same
as described in table 1.

4.4. Repertoire Validation. As mentioned above infeasible solutions are
not included in the repertoire, and thus no penalty function is used. Due to
random initialization or mutation, infeasible solutions are produced, solutions’
validation is performed by choosing a random bit contains value 1 to be flipped
into 0 until this solution satisfies all knapsacks’ constraints.

4.5. Cloning Selection Mechanism. Each p system in the repertoire is sup-
posed to be enhanced continuously by time because of maturation performed
by mutation. The higher affinity solutions will be found in the inner most
regions and cloning will performed proportional to these solutions’ affinity, i.e.
a high membrane inner most solution affinity means a high cloning rate; a low
membrane inner most solution affinity means a low cloning rate or a negative
selection (clonal deletion).

Figure 5. An example of mutation.

4.6. Mutation. The concept of mutation is essential to membrane-immune
algorithm, as it is the only way for repertoire diversification and maturation.
Without sufficient mutation the population will tend to converge towards a
few good solutions, possibly representing local optima. On the other hand,
with too much mutation the search will have problems of focusing on poten-
tially good solutions; this is the tradeoff between exploration and exploitation.
According to our experiments we found that 0.1 mutation rate is suitable.

4.7. Meta-dynamics. To keep the repertoire diversity, a number of ran-
domly generated P systems are added to the repertoire, our experiments
showed that there is no need to perform this step, but in other problems
it could be useful.
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4.8. Parameters Setting. The following setting is used in our experiments:
Repertoire size = 30 P systems, maximum iterations number of each P system
= 50, each P system in the repertoire has 100 nested membranes, propor-
tional cloning is used according to the highest inner most solution affinity,
clonal/negative selection iterations is performed 100 times. The proposed al-
gorithm is tested on 9 benchmarks problem and every problem is solved 100
times. the 30 P systems that compose the population are independent at the
iteration level, so they can work in a destribued system for effeciency measures.

Parameters setting in work mentioned in [2] are as follows, the population
size is 100 individual, cross over rate=0.9, mutation rate = 0.01, No cloning is
applied. The algorithm uses proportional selection. Total number of 100 runs
is executed for each test problem. parameters setting in work mentioned in
[13] are as follows, population size = 100, crossover rate = 0.6, mutation rate
= 1/n, where n is the population size, No cloning is applied, The algorithm
uses proportional selection. Total number of 100 runs is executed for each test
problem.

Optimal solution in table 3 means the known optimum. The known op-
timum may be enhanced using the following suggestions, using a different
stopping condition rather than fixed number of iterations, i.e. a heuristic
termination condition, for example the algorithm stops when there no en-
hancement or the enhancement is less than certain value, also the mutation
value could be degraded rather than fixed value, i.e. in the first iterations the
mutation is high and degrades by incrementing iterations, this is under the
assumption that the whole individuals are enhanced by time. Increasing the
number of P systems allows the coverage of more search space and this could
result in general enhancement to reach better optimal.

The membrane-immune algorithm is evaluated on the same nine test prob-
lems, for comparison reasons, which are previously solved by [2, 13], the ab-
breviations CT will be used to refer to the work [2] , and KBH for the work
[13], while NBF will be used for referring to this paper. The problem sizes
range from 15 to 105 objects and from 2 to 30 knapsacks. A collection of
all of these problems is available from the OR-library by Beasley [8]. All in-
formation about each problem is explained in table 2, number of knapsacks,
number of objects, optimal solution, also average value of solutions found by
the membrane-immune algorithm in comparison with KBH and CT. Table 3
and figure 6 explains the degree of how much each algorithm finds optimal
solution.

The membrane immune algorithm with the previously mentioned setting
in subsection 4.8. is able to find the global optimum point exactly for all
problems with a clear difference from KBH and CT, but the exception is
given by the problem weing7-105. the previous setting worked badly, so we
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changed the repertoire size to be 100, and the number of cloning iterations
to be 400. Nevertheless most of the runs get stuck before finding the optimal
solution, but still the average value of the found solutions is accepted.

The percent of optimum solutions found and the average affinity value
over all runs turns out to results indicates that the membrane-immune algo-
rithm can serve as a fast and robust approximation heuristic for combinatorial
problems.

Table 2. Experimental results of KNH, CT and NBF that
represent the average value of execution using the nine bench-
marks problems solved by Khuri et al. in [13] and Cotta, Troya
in [2].

Problem Knapsacks Objects Optimal Average

KBH CT NBF Winner

Knap15 10 15 4015 4012.7 4015.0 4015.0 CT, NBF

Knap20 10 20 6120 6102.3 6119.4 6120.0 NBF

Knap28 10 28 12400 12374.7 12400.0 12400.0 CT, NBF

Knap39 10 39 10618 10546.9 10609.8 10618.0 NBF

Knap50 10 50 16537 16378.0 16512.0 16528.3 NBF

Sento1 30 60 7772 7626 7767.9 7772.0 NBF

Sento2 30 60 8722 8685 8716.5 8721.95 NBF

Weing7 2 105 1095445 1093897 1095386.0 1094775.0 CT

Weing8 2 105 624319 613383 622048.1 624319.0 NBF

Table 3. A Comparison between KNH, CT and NBF explains
how much each algorithm finds the optimal solution

Problem KBH CT NBF
Knap15 83% 100% 100%
Knap20 33% 94% 100%
Knap28 33% 100% 100%
Knap39 4% 60% 100%
Knap50 1% 46% 50%
Sento1 5% 75% 100%
Sento2 2% 39% 95%
Weing7 0% 40% 5%
Weing8 6% 29% 100%
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Figure 6. A Comparison of the three algorithms explains the
percent of finding the optimal solution.

5. Conclusions and Remarks

We have proposed the membrane-immune algorithm which is inspired from
the structure of living cells and the vertebrate immune system. The algo-
rithm is evaluated by solving a famous NP-complete optimization problem
namely the multiple 0/1 knapsack problem and overcame two genetic based
algorithms.

Although there is a great success in the design of theoretical solutions to
NP problems, these solutions have a fundamental drawback from a practical
point of view. It is not clear yet what is the actual real implementation of
Membrane Computing, an in vitro, in vivo or in silico implementation, any
case, a membrane will have a space associated that could be a piece of memory
in a computer, a pipe in a lab or the volume of a bacteria, only brute force
algorithms will be able to implement little instances of such problems. If we
take an in vivo implementation where each feasible solution will be encoded
in an elementary membrane and such elementary membrane is implemented
in a bacteria of mass ∼= 7 × 10−16 kg., for example E. Coli, then, a brute
force algorithm which solves an instance of an NP problem with an input size,
for example 40 will need approximately a mass ∼= 6 × 1024 kg., which equals
approximately mass of the earth, so it is not practical for a P system to be
implemented in solving relatively large NP-Complete problems, the proposed
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membrane-immune algorithm can find approximate accepted solutions and
still has the feasibility for a practical real implementation in terms of resources.

There are many possibilities for improving membrane-immune algorithm,
for example different termination conditions could be used, i.e. one can ter-
minate execution if the good solution is not changed during a predetermined
number of steps, considering meta-dynamics in the earlier execution in the
algorithm could enhance performance, meta-dynamics may be useful in some
applications and in others not, also instead of performing cloning according
to the affinity of the inner most solution, it could be performed according to
the average value of all solutions for a P system, the first mechanism takes
into consideration the affinity of one solution to perform cloning but the latter
counts for all solutions’ affinity in a p system. Because the repertoire has a
number of independent P systems, the algorithm will be easily implemented in
parallel, distributed, or grid computing systems which indicates a better per-
formance. Each p system itself could be implemented in a parallel system as
it contains a number of independent regions all of which has its solutions and
maturation/mutation technique. Also different mutation techniques may be
more suitable for different NP-complete problems like mutation per solution
or Swap Mutation; the best mutation rate for repertoire is an open point, mu-
tation may be high in early iteration and get smaller by time. The proposed
structure could be involved in more complex structures as well.

Our positive results support the idea that membrane-immune algorithm is
a suitable approach for tackling highly constrained NP-complete problems.
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