
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 4, 2011

A NEW ARCHITECTURE SUPPORTING THE SIZING

WINDOW EFFECT WITH STREAMINSIGHT

SABINA SURDU

Abstract. Data stream processing is a new paradigm that emerged in
the last years in the field of data management. Dedicated systems are
designed to deal with the challenges posed in the process of executing con-
tinuous queries over infinite data streams. One of the most sensitive issues
in this context is resource usage. The current approaches to minimize sys-
tem memory and CPU consumption don’t take into account the size of
a window which is input to a query. In a previous paper we proposed a
novel technique, that tackles resource usage by assessing the Sizing win-
dow effect. In this paper we propose a new architecture for the Sizing
window effect, built on top of a commercially available DSMS, namely the
WindowSized architecture.

1. Introduction

For a long time, traditional information processing has been the answer
to a large number of data management applications. Conventional database
management systems were handling a significant amount of the data process-
ing. These systems store information persistently as finite relations. Queries
are issued against the database when needed and their results only reflect the
current state of the data. Recently, this processing paradigm proved its short-
comings when it came to handling data that was not static, but continuous,
i.e. data streams. New challenges are posed in the paradigm of data stream
processing. One of the most important ones is resource usage.

The objective of this paper is twofold. First, we propose a new architecture
for optimal query processing, using the Sizing window effect, on top of a com-
mercially available Data Stream Management System (DSMS): StreamInsight.
We highlight our main contributions, as well as the benefits and limitations of

Received by the editors: November 25, 2011.
2010 Mathematics Subject Classification. 68M20, 68N01, 68P01.
1998 CR Categories and Descriptors. C.4 [Computer Systems Organization]: Perfor-

mance of Systems – Measurement techniques; D.0 [Software]: General; H.2.4 [Information
Systems]: Database Management – Systems - query processing .

Key words and phrases. data stream processing, sizing window effect, continuous queries,
data stream processing systems, windowsized architecture.

111

112 SABINA SURDU

this approach. Second, we motivate the need for continuous query processing
in a world where continuous data is present in an ever larger number of fields.
Health care monitoring, network monitoring, telecommunications, astronomy
or seismography are only some of the fields that are coping with data streams.
In the end we conclude on the results of our work and provide future research
directions.

2. Data stream processing

A data stream is a sequence of values produced over time by a data source.
Most of the applications that cope with data streams are called monitoring ap-
plications, because they monitor an arbitrary number of data streams. This
class of data-intensive applications scans data streams, performs some pro-
cessing on read data values and computes desired output in real time. For a
detailed description of this field please refer to our paper [13].

Data streams are processed by continuous queries, that perpetually run
over time and provide updated results as their underlying input data changes.
As the field matures, novel challenges are being posed in the process. One of
the most important ones is resource usage.

2.1. Resource usage in data stream processing. Taking into account the
temporal dimension adds great complexity to the query processing paradigm.
The number of data sources as well as the rate at which data arrives at a system
can greatly increase. This can affect the system’s ability to output desired
results in a real time manner, when processing a great number of complex,
continuous queries. Various query optimization techniques (e.g. operator
scheduling or load shedding [15]) are proposed, in order to tackle resource
usage when processing high throughput data streams with continuous queries.
To the best of our knowledge, none of them takes into account the size of the
input window. In this subsection we will briefly review related work on query
optimization and resource usage in data stream processing.

STREAM is a DSMS developed at Stanford, which supports declarative
continuous queries over data streams and stored relations [4]. The system
tackles performance issues in three ways. First, it eliminates data redundancy,
by sharing state within and across query plans. Second, it drops data that
will not be used, by exploiting constraints on streams (referential integrity,
ordered-arrival and clustered-arrival). Third, the system uses operator sched-
uling techniques, which aim at minimizing intermediate state [2].

[11] discusses approximation methods from STREAM, which are catero-
gized into static techniques and dynamic techniques. Load shedding is men-
tioned in the second category, as the process of dropping tuples from inter-
operator queues in the query operator tree, when the queues become too large.

THE WINDOWSIZED ARCHITECTURE 113

SoCQ, described in [8], is a Pervasive Environment Management System,
which provides a declarative way of writing continuous queries against classical
data, streams and services. The cited paper describes basic query optimization
goals (e.g. reduce intermediary relations in queries) and rules (e.g. pushing
selections down in the query operator tree).

NiagaraCQ introduces a novel approach to executing continuous queries.
Apart from executing queries in a change-based manner, every time a tuple
appears on a stream, NiagaraCQ introduces timer-based continuous queries,
which execute at time instants specified by the user, as [6] shows. This manner
of executing queries can greatly impact resource consumption.

Aurora and Medusa are two related DSMSs, described in [18]. The former
is centralized, whereas the latter is distributed, using Aurora as a single-site
processing engine.

Aurora is based on a combined train and superbox scheduling approach
[5]. By train scheduling, Aurora batches multiple tuples as long input trains
for operators (boxes in Aurora query diagram) to execute. This saves box call
overhead (as the number of box calls decreases) and allows a box to better op-
timize its execution with an increased number of data elements. By superbox
scheduling, Aurora pushes a tuple train through multiple boxes, which avoids
the cost of going to disk. Among other optimization techniques, we can enu-
merate: inserting projections as soon as possible in the query diagram in order
to reduce tuple sizes, combining boxes whenever possible to reduce box exe-
cution cost and reordering commutative boxes. Apart from these techniques,
Medusa encompasses cross-site optimization methods.

Borealis is a second generation DSMS, based on Aurora (for stream pro-
cessing features) and Medusa (for distributed stream processing capabilities)
[12]. This system uses collaborative optimizers on three levels: local, neigh-
bourhood and global. Their purpose is to tackle problems like locating through-
put bottlenecks or latency [1].

2.2. Linear Road. In order to compare DSMSs, various benchmarking frame-
works have been proposed. A key benchmark designed for this purpose is Lin-
ear Road [16]. We choose to discuss this benchmark, since our experiments in
[14] were conducted on data from Linear Road and we plan to use it in the
WindowSized architecture as well.

The Linear Road benchmark is designed to compare performances of Data
Stream Management Systems relative to each other and to traditional rela-
tional Database Management Systems [3]. Linear Road simulates a variable
tolling system in a fictional metropolitan area, Linear City. This urban setting
contains 10 parallel expressways, that run horizontally from one another. Each
expressway is 100 miles long and is divided into 100 one-mile long segments.

114 SABINA SURDU

Each expressway has two directions of travelling, Eastbound and Westbound
and 4 lanes in each direction (3 travelling lanes and one dedicated lane for
entering into and exiting from the expressway). An MIT traffic simulator [17]
generates input data for the benchmark, as a set of vehicles that take trips
on the expressways. Each vehicle is considered to be equipped wich a device
that emits a position report every 30 seconds (describing the time at which
the report is generated, the vehicle’s speed and location). Based on segment
statistics (like average number of vehicles, average speed and proximity of
accidents), a variable toll is issued for a vehicle, every time it enters a new
segment. The purpose of variable tolling is to reduce expressways congestion
at peak traffic periods.

Apart from the continuous queries that compute tolls and detect accidents,
the system also supports historical queries issued each time a position report is
emitted by a vehicle, with a given probability (like requests for vehicle account
balance or travel time predictions). Each query response must fulfil response
time and precision requirements specified by the benchmark. A DSMS that
implements Linear Road is assigned an L-rating, which represents the number
of expressways it can support while still meeting the benchmark requirements.
Linear Road is supported by systems like STREAM and Aurora.

3. The Sizing window effect

In [14] we laid the bricks of our proposed novel approach to cope with re-
source usage in data stream processing, namely the Sizing window effect. Our
technique attempts to compute an optimal window size for a given continuous
query, thereby placing a minimal upper bound on the resource consumption
for that query, as our previous paper shows. We are interested in aggregate
queries [10] over windows that are not semantically significant.

3.1. Formalization. We will describe the formalization model that we devel-
oped in [14]. We consider a discrete, ordered time domain T , as the infinite
countable set of time instants, starting from the past and going into the fu-
ture. For simplicity, we will choose the domain of relative integers to represent
T : T = Z = {−∞, . . . ,−2,−1, . . . , 3, 4, . . . ,+∞}, where ti = i, adopting the
approach described in [9].

Then we define a stream S as follows: S = {(s, t)|s ∈ D|schema(S)|, t ∈ T},
where D is the countable infinite set of constants and schema(S) is the list of
attributes in the schema of S. In the rest of this paper we will consider that
tc is the current timestamp.

If we denote by Q a continuous query, then by writing Q(S, tc) we refer
to the result of evaluating Q against stream S, at time tc. We will denote the

THE WINDOWSIZED ARCHITECTURE 115

result of executing a query against a stream, at current timestamp, with Rs:

(1) Rs = Q(S, tc)

A sliding window over stream S is defined as follows: SW (S, [ti, tc]) =
{(s, t) | (s, t) ∈ S, t ∈ [ti, tc]}. The starting point of this window in time is ti
and the endpoint is tc. For simplifying purposes, this alternative equivalent
notation can be used: SWic(S). Then the result of evaluating Q at time tc
against a sliding window over stream S that starts at ti and ends at tc is
denoted by Q(SWic(S), tc). We will denote the result of executing a query
against sliding window SWic(S), at current timestamp, with Rwic :

(2) Rwic = Q(SWic(S), tc)

We will consider the size of a window to be the number of time instants
contained by the window. The size of the window SWij(S) is tj − ti + 1.

As we already mentioned, we focus on aggregate queries over data streams.
This means that at any current timestamp tc, both Rs and Rwic contain ag-
gregate results from the real numbers domain R. We plan to extend our focus
to queries that issue non-aggregate results, as explained in the last section.

We defined the following aggregate distance, for aggregate-queries results,
which measures the precision of a windowed result, when compared with a
result obtained from a query executed against the stream:

(3) distance : R× R → R, distance(Rs, Rwic) = |Rs −Rwic |,
where Rs and Rwic are both obtained at current timestamp tc, as explained
above. The size of the window from which Rwic is obtained can be deduced
from the temporal coordinates ti and tc. Rs is considered to be the correct
result, since it is obtained when executing the query against all the data from
the stream.

3.2. Experiments. We performed the experiments in [14] on data from Lin-
ear Road, for three continuous queries. We will briefly present the strategy
we used and the results we obtained for one of the queries.

In order to find an optimal window size, we started with a window that
contained all the data that had arrived on the stream and evaluated Rs, the re-
sult of the query executed against this window (i.e. against the entire stream),
which was the correct result. Subsequently, we constantly decreased the size
of the window, up to the point when the result of the query did not fulfil
specified precision requirements. At that point, we had just reached the min-
imal window size, which needed minimal resource usage, while still meeting
precision exigencies.

Let us denote this window size by σ. This means the average of the
distance function between the correct result and the results obtained from

116 SABINA SURDU

windows of size σ is below a given precision threshold, whereas the average
of the distance function between the correct result and the results obtained
from windows of size σ − 1 or less is above the given precision threshold. At
the same time, a query executed against any window of size greater than σ
would use more system resources (CPU and memory to process and to store
respectively more tuples).

For query: ”Compute the average number of vehicles per time unit that
have been travelling on a given segment”, we reached an optimal window size
of 1000 time instants, for a precision threshold of 1, as Figure 1 shows. This
means choosing a window size of 10000 time instants would produce correct
results, with considerably increased resource usage. On the other hand, a
window size of 100 time instants would use less memory and CPU, but the
precision of the result will be degraded.

Figure 1. Average number of vehicles / time unit

4. WindowSized architecture

StreamInsight is a DSMS released by Microsoft, as part of SQL Server
2008 R2 [19]. It encompasses a temporal query engine, which executes stand-
ing queries (Microsoft’s terminology for continuous queries) over input data
streams, which flow through the system. Data streams are produced by data
sources and are feeding input adapters, which translate them into a format

THE WINDOWSIZED ARCHITECTURE 117

understood by the StreamInsight engine. The results of the standing queries
are fed into output adapters. The latter translate these results into formats
that the event targets understand.

In order to be able to write any kind of queries and register them on the
server, a C# application must be developed. This encompasses continuous
queries written in LINQ, which are registered into the StreamInsight server.
The complete integration of LINQ queries in the C# application makes it
easier to develop a monitoring application on this platform.

On top of this application we are planning the integration of a Window-
Sizing module, which takes into account the executing query and computes an
optimal window size for the query. Figure 2 highlights the main components of
such an architecture. This architecture is based on the StreamInsight applica-
tion architecture approach, composed of event sources, input adapters, stand-
ing queries in the StreamInsight query engine, output adapters and event tar-
gets [7]. Our contribution is represented by the WindowSizing module, which
communicates with the query engine to evaluate the nature of the queries,
with input adapters - to change the window size and with output adapters -
to obtain query results.

Figure 2. WindowSized architecture

The main difficulty is represented by the computation of the correct result.
In the experiments we previously described, we bulk loaded the Linear Road
data into a commercially available DBMS and computed the correct result
on all the available data. But in a DSMS we cannot compute the correct
result against an in-memory stored collection of 12 million records. Hence we

118 SABINA SURDU

propose to choose a maximum window size, depending on available system
resources. For this purpose we define the function:

(4) maxWindowSize : CPU ×Memory × TupleSize×DataRate → N

This function takes as input the available CPU and memory in the system,
the maximum size of the tuples from the input stream and the maximum data
rate (number of tuples received every time instant). It outputs a natural num-
ber, representing the maximum number of time instants a window can contain,
when being processed on the current machine. This is the maximum window
size, expressed as number of time instants, accepted by our architecture.

Then we will consider the correct result to be the one obtained when ex-
ecuting the query against a window, whose size is computed by evaluating
maxWindowSize. Even though this result is an approximation of the correct,
ideal result, it is the best approximation we can obtain when executing contin-
uous queries and will be used as a reference point for queries executed against
considerably smaller windows.

The task of establishing the optimal window size is not left for the query
developer any more. In cases where the result of a query is more and more
accurate as the window size increases, resource consumption also increases.
Hence a developer may not choose the best window size when writing contin-
uous queries. By using the WindowSized architecture, the system can better
reason about the available resources and can greatly minimize both memory
and CPU usage. Another advantage is the use of the Visual Studio IDE and
the complete .NET Framework integration, which can greatly reduce devel-
opment time for monitoring applications, when the .NET platform is already
used by an entity [7].

5. Conclusion and future directions

In this paper we proposed a new architecture for processing continuous
queries over data streams, using our previously developed Sizing window effect:
the WindowSized architecture. We designed a WindowSizing module that
computes the optimal window size for a given continuous query, on top of
a monitoring application developed with StreamInsight. We highlighted the
benefits and limitations of our approach. Our implementation of a prototype
based on the WindowSized architecture is currently in progress. We could have
chosen any other DSMS. StreamInsight was chosen based on personal technical
experience with .NET technologies and the availability of the platform on the
MSDN Academic Alliance Software Center.

THE WINDOWSIZED ARCHITECTURE 119

Future work will revolve around two research directions. First, we will
rigorously formalize our WindowSized architecture. Subsequently, we will fi-
nalize the development of a prototype based on the WindowSized architecture.
Eventually we will conduct a set of extensive experiments using the prototype.
As a second objective, we plan to extend our focus of research on queries which
issue non-aggregate results. We are working on a distance function for queries
that issue collections of tuples as results. We will conduct experiments on
these types of queries as well and integrate the newly obtained functionalities
in the WindowSized architecture.

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S. Zdonik, The
Design of the Borealis Stream Processing Engine, Proceedings of the 2005 Conference
on Innovative Data Systems Research (CIDR), 2005.

[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivas-
tava, J. Widom, STREAM: The Stanford Data Stream Management System, Technical
Report, Stanford InfoLab, 2004.

[3] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stone-
braker, R. Tibbetts, Linear Road: A Stream Data Management Benchmark, Proceed-
ings of the 30th International Conference on Very Large Data Bases (VLDB ’04), pp.
480-491, 2004.

[4] S. Babu, J. Widom, Continuous Queries over Data Streams, SIGMOD Rec., vol. 30, n°

3, pp. 109-120, 2001.
[5] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, M. Stonebraker, Reducing

Execution Overhead in a Data Stream Manager, ACM Workshop on Management and
Processing of Data Streams, 2003.

[6] J. Chen, D. J. DeWitt, F. Tian, Y. Wang, NiagaraCQ: A Scalable Continuous Query
System for Internet Databases, Proceedings of Special Interest Group on Management
of Data Conference 2000 (SIGMOD’00), pp. 379-390, 2000.

[7] T. Grabs, R. Schindlauer, R. Krishnan, J. Goldstein, R. Fernández, Introducing Mi-
crosoft StreamInsight, Technical article, 2010.

[8] Y. Gripay, F. Laforest, J.-M. Petit, SoCQ: A Framework for Pervasive Environments,
10th International Symposium on Pervasive Systems, Algorithms and Networks, pp.
154-159, 2009.

[9] Y. Gripay, A Declarative Approach for Pervasive Environments: Model and Implemen-
tation, Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, 2009.

[10] J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, Semantics and evaluation tech-
niques for window aggregates in data streams, In SIGMOD Conference, pp. 311-322,
2005.

[11] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, R. Varma, Query Processing, Resource Management, and Approximation
in a Data Stream Management System, Proceedings of the 2003 Conference on Innova-
tive Data Systems Research (CIDR), 2003.

120 SABINA SURDU

[12] E. Ryvkina, A. S. Maskey, M. Cherniack, S. Zdonik, Revision Processing in a Stream
Processing Engine: A High-Level Design, Proceedings of the 22nd International Con-
ference on Data Engineering (ICDE 2006), 2006.

[13] S. Surdu, Data stream management systems: a response to large scale scientific data
requirements, Annals of the University of Craiova, Mathematics and Computer Science
Series, vol. 38, n° 3, pp. 66-75, 2011.

[14] S. Surdu, V. M. Scuturici, Addressing resource usage in stream processing systems:
sizing window effect, The International Database Engineering and Applications Sympo-
sium ACM International Conference Proceeding Series, pp. 247-248, 2011.

[15] N. Tatbul, QoS-Driven Load Shedding on Data Streams, EDBT ’02 Proceedings of
the Workshops XMLDM, MDDE, and YRWS on XML-Based Data Management and
Multimedia Engineering-Revised Papers, pp. 566-576, 2002.

[16] R. S. Tibbetts, III, Linear Road: Benchmarking Stream-Based Data Management Sys-
tems, M.Sc. Thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, 2003.

[17] Q. Yang, H. N. Koutsopoulos, A Microscopic Traffic Simulator for Evaluation of Dy-
namic Traffic Management Systems, Transportation Research Part C, vol. 4, n° 3, pp.
113-129, 1996.

[18] S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Cetintemel, M. Balazinska, H. Balakr-
ishnan, The Aurora and Medusa Projects, IEEE Data Engineering Bulletin, vol. 26, n°

1, pp. 3-10, 2003.
[19] ***, Microsoft StreamInsight. Product documentation, http://msdn.microsoft.com/en-

us/library/ee362541.aspx, accessed: 03.11.2011.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
St., 400084, Cluj-Napoca, Romania

E-mail address: surdusabina@yahoo.com

