STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LVI, Number 4, 2011

STORING LOCATION-BASED SERVICES’ DATA IN
KEY-VALUE STORE

VIORICA VARGA, ADRIAN SERGIU DARABANT, LEON TAMBULEA,
AND BAZIL PARV

ABSTRACT. This paper proposes some solutions and discusses some issues
related to the mapping of relational data and queries to a Key-Value store.
The problem is stated for Location-based services (LBS), which deal with
millions of users and thus millions of database records. The mapping
process of a relational table consists in a transformation that assigns a
part of the tables’s row to the Key part and another part to the Value.
We discuss two approaches to the mapping: generic and a LBS specific.
The generic approach is a universal solution that can be applied to any
relational to Key-Value mapping process.

1. INTRODUCTION

The data management research community is confronted with building
consistent, available, and scalable data management systems capable of serv-
ing petabytes of data for millions of users especially for web application. Dis-
tributed database systems [13], [9] were the first generic solution that dealt
with data not bounded to the limits of a single machine. These systems are not
used frequently in industry because of their high complexity and due to the
crippling effect on performance caused by partial failures and synchronization
overhead.

Recent years different classes of scalable data management systems have
been appeared such Google’s Bigtable [5], Amazon’s Dynamo [8] and PNUTS
[6] from Yahoo! and others. All of these systems deal with petabytes of data,
serve millions of requests with high availability requirements and run on cluster
computing architectures. With the growing popularity of the cloud computing
paradigm, many applications are moving to the cloud.

Received by the editors: October 25, 2011.

2010 Mathematics Subject Classification. 68P15, 68P20.

1998 CR Categories and Descriptors. H.3.2 [Information Storage and Retrievall:
Information Storage — F'ile organization.

Key words and phrases. Key-Value store, relational model, data design, query mapping.

51

52 V. VARGA, A.S. DARABANT, L. TAMBULEA, AND B. PARV

Nowadays mobile network operators create differentiation through the de-
livery of highly personalized services. One of the most powerful ways to per-
sonalize mobile services is based on location. These systems have millions
of users. Location-based services (LBSs) are IT services for providing infor-
mation that has been created, selected, or filtered taking into consideration
the current locations of the users or mobile objects. They can also appear
in conjunction with conventional services like telephony. The attractiveness
of LBSs results from the fact that their participants do not have to enter lo-
cation information manually, but that they are automatically pinpointed and
tracked.

The simplest type of LBSs provide the mobile user with nearby points
of interests such as hospitals, parking places, restaurants, movies, or filling
stations. The user is automatically located by the mobile network. He must
specify the points of interest, for example, whether he would like to receive
a list of all nearby theaters or concerts, and the desired maximum distance
between his current position and the points of interest. The request is then
passed to a service provider, which assembles a list of appropriate points of
interest and returns it to the user. Location-based services in mobile network
store usually the required data in distributed database systems. The response
time of these systems for a large number a users is not adequate. In a cur-
rent work [7] we study the performance of location based applications. In the
previous approach [7] the problem of finding events, the events’ show times in
the current week for a user was studied. The search for show times was made
around the user’s position. The data has been stored in a relational database
in normalized tables and the response time was not acceptable.

[1] analyzes the design choices that allowed modern scalable data man-
agement systems to achieve orders of magnitude higher levels of scalability
compared to traditional databases. The authors give some possible design
solutions for data management in the cloud.

Database research recognizes today [4] that different data models and
database technologies should be used in different application domains. As
an example, many companies in the Web industry have abandoned traditional
relational DBMSs for so-called ”No-SQL” data stores. This paper refers to
key-value stores. Our goal is to analyze the pros and cons of transferring huge
amounts of data of a location-base application from a distributed relational
DBMS to a key-value store in the cloud in order to exploit the performance of
the latter and, in the same time, to provide good response times for queries.
The goal of this paper is to lay some design principles for the data management
systems serving the next generation of applications in the cloud.

The structure of the paper is as follows. After this introductory section,
the following section introduces the technical details of a No-SQL store. The

STORING LOCATION-BASED SERVICES’ DATA IN KEY-VALUE STORE 53

original part of the paper follows. The next two sections discuss in some detail
the options regarding data design and storing, and relational query mapping to
key-value stores. Last section draws some conclusions and sets future research
directions.

2. NO-SQL STORE

The data model for "No-SQL” store it is not a unique one. It can be
build by basic data elements called ”documents”, ”objects”, or "records”.
According to [4] its essence is not the lack of SQL, but the presence of the
following features:

e a little or no pre-defined schema; objects, records, or documents can
have any number of attributes of any type;

e a simple query interface, and not a SQL processor;

e high scalability over dozens or hundreds of nodes, with the price of
giving up 100% ACID semantics;

e cventual consistency - guaranteed consistency only within a single ob-
ject, record, or document;

e high availability, necessary to make scalability across many machines
useful.

Considering their data model and functionality, " No-SQL” data stores can
be split into three groups: key-value stores, document stores and extensible
record stores. We will use key-value stores, which have a distributed index
for object storage. The stored objects are not interpreted by the system:;
they are stored and handled back to the client application as BLOBs. Basic
functionality of key-value stores usually include object replication, partitioning
the data over many machines, and a sort of object persistence;

A key-value store record has two parts: Key and Value part.

Different client API’s were elaborated for different systems, see for example
[2], [3]. We present the interface of [2] which includes the following operations:

e STORE: stores (key, value) in the file;

e ADD: adds (key, value) to the file iff the lookup for key fails;

e REPLACE: replaces (key, value;) with (key, valuez) based on (key,
values);

e GET: retrieves either (key, value) or a set of (key;, value;) pairs based
on key or key;,i =1...k.

e DELETE: deletes (key, value) from the file based on key

Taking into account these facts, the process of mapping a relational data-
base to a key-value store is split into two sub-processes: migrating the data
and transforming the queries.

54 V. VARGA, A.S. DARABANT, L. TAMBULEA, AND B. PARV

3. DATA DESIGN AND STORING IN KEY-VALUE STORE

The structure of one record in a key-value file being simple, the Key part
and the Value part have to be determined. In order to know the structure
of the record in a key-value file, we have to store its metadata. It can be
represented using well-known formats like XML or JSON. The structure of
the key-value record for LBS applications after the mapping can be described
using (a) a generic style or (b) a custom structure for spatial data. The first
solution is called generic because it can be applied to any relational database.

Geos Events
—@= | 7 poilD o — N s o
latitude fanguage
longitude vondorD
vendor
type
name
linkID
category
Pois ShowTimes vendorCategory
== ¥ poild gD customCategory
@ poilanguage EV?HHD = shortDescription
poiName I poilD description
Categories fype - review
startTime price
Address -
zip endTime rating
City a.llday openingtimes
linkID media

FiGure 1. Simplified database scheme

3.1. Generic style. In this article the running example is about finding
events, the events’ show times in the current week for a user in a LBS ap-
plication. The location of the user is known, the search for show times is
made in the user’s bounding box, which is a rectangle. In the first approach
the structure of the data is presented in a relational database in normalized
tables: Geos, Pois, Events and ShowTimes. Every point of interest has a dif-
ferent name for each different language, so we store the location of the point
of interest in the Geo table once and the name, address, etc. in table Pois.
One event can appear with its show time at different points of interest, so we
store the event once in table Events and its show times in table ShowTimes,

STORING LOCATION-BASED SERVICES’ DATA IN KEY-VALUE STORE 55

where the poiID represents the location of the event. The simplified structure
of the database is presented in Figure 1.

Now the proposed structure of the key-value record is presented. The
metadata describes for each table of a database: the key part in primaryKey
tag, the structure of the record in Attribute tags, index files in IndexFile
and IndexAttributes tags, and the relationships in foreignKey tags.

—<Databases>
— <DataBase dataBaseName="SpatialPOIs">
—<Tables>
—<Table tableName="geo" fileName="geo .kv" rowLength="114">
— <Structure>
<Attribute attributeName="poilD" type="char" length="64" isnull="0"/>
<Attribute attributeName="latitude" type="double" isnull="0"/>
<Attribute attributeName="latitude" type="double" isnull="0"/>
</Structure>
—<primaryKey>
<pkAttribute>poilD</pkAttribute>
</primaryKey>
— <IndexFiles>
— <IndexFile indexName="geoLat.ind" keyLength="25" isUnique="0" indexType="BTree">
—<IndexAttributes>
<IAttribute>latitude</TAttribute>
</IndexAttributes=>
</IndexFile>
— <IndexFile indexName="geoLong.ind" keyLength="25" isUnique="0" indexType="BTree">
—<IndexAttributes>
<IAttribute>longitude</TAttribute>
</IndexAttributes=>
</IndexFile>
</IndexFiles>
</Table>
+<Table tableName="poi" fileName="poi.kv" rowLength="626">=/Table>
</Tables>
</DataBase>
</Databases>

FIGURE 2. The structure of the data

Example 1. For the running example the structure of geo key-value file is
on Figure 2. The primary key and index files of the table can be seen too. In
Figure 3 the metadata for poi key-value file is presented with the relationship
(foreignKey tag) to geo key-value file.

Transforming a table T from the relational DB to the key-value store yields
a set key-value files (usually more than one). The data from one table is
stored in a key-value file, which we will name master file, where the Key
part is the primary key of the table (primaryKey tag) and the Value part

56 V. VARGA, A.S. DARABANT, L. TAMBULEA, AND B. PARV

—<DataBase dataBaseName="SpatialPOIs">
— <Tables>
+<Table tableName="geo" fileName="geo kv" rowLength="114"></Table>
—<Table tableName="poi" fileName="poi kv" rowLength="676">
— <Structure>
<Attribute attributeName="poilD" type="char" length="64" isnull="0"/>
<Attribute attributeName="poiLanguage" type="int" isnull="0"/>
<Attribute attributeName="poiName" type="varchar" length="100" isnull="0"/>
<Attribute attributeName="Categories" type="varchar" length="255" isnull="0"/>
<Attribute attributeName="Address" type="varchar" length="100" isnull="0"/>
<Attribute attributeName="Zip" type="varchar" length="23" isnull="0"/>
<Attribute attributeName="City" type="varchar" length="100" isnull="0"/>
</Structure>
— <primaryKey>
<pkAttribute>poilD</pkAttribute>
<pkAttribute>language</pkAttribute>
</primaryKey>
— <foreignKeys>
— <foreignKey>
<fleAttribute>poilD</flkkAttribute>
—<references>
<refTable>geo</refTable>
<refAttribute>poilD</refAttribute>
</references>
<foreignKey>
</foreignKeys>
— <IndexFiles>
— <IndexFile indexName="poiPoID.ind" keyLength="64" isUnique="1" indexType="BTres">
— <IndexAttributes>
<TAttribute>poilD<TAttribute>
</IndexAttributes>
</IndexFile>
— <IndexFile indexName="poiName ind" keyLength="100" isUnique="1" indexType="BTree">
—<IndexAttributes>
<TAttribute>poiName</TAttribute>
</IndexAttributes>
</IndexFile>
</IndexFiles>
</Table>

F1GURE 3. The structure of the data with relationships

is the concatenation of non-primary key attributes, so every attribute from
Structure tag except the primary key of the table.

One table may have one or more unique index files. For every unique index
file a key-value file has to be created: the Key part is the search key of the

STORING LOCATION-BASED SERVICES’ DATA IN KEY-VALUE STORE 57

index file, namely the concatenation of IAttribute values. The Value part of
the unique index file is the corresponding Key part of the master file, which is
the primary key of the master file. The search process on a unique index key
requires two GET (Key) methods, the first on the unique index and the second
on the master file, using as a key the value obtained in the first GET (Key)
method. Where the underneath implementation allows access to the address
of the Value part of the master file one can alternatively store this address as
the Value part in the unique index. This approach avoids an additional data
access when the index is used.

For every non-unique index file a new key-value file is created. More
solutions can be given. If the key-value store accepts duplicate key values,
then the mapping is immediate. Otherwise one can use solutions based on
inverted indexes or making search key unique as proposed in [11] pp. 356-358.

Summarizing the above, for each table T the following key-value files have
to be produced:

e the data from T is stored in a master key-value file T. key-value with
Key = T.PrimaryKey and Value = concatenation of non-primary key
attributes of T;

o for every unique index file T.I of Tanew T.I.key-value file is created
with Key = concatenation of IAttribute values and Value = T.Key
(master);

e for every non-unique index file T.I of T a new T.I.key-value file
is created. Different solutions: inverted index or making search key
unique or duplicate key values.

Example 2. For relational table poi the following key-value files have to be
produced:

e the data from the table is stored in a masterP0I key-value file with
Key = (poilD+poilanguage) and
Value = poiName+Categories+Address+Zip+City;
e one key-value file for the poiName unique index key with
Key = poiName and
Value = (poilD+poilanguage) ;

3.1.1. Inverted index for non-unique index. A single key-value record for each
search key is built, with Key = search key value and Value = list of tuple
pointers of the records (primary keys from master), where the corresponding
search key is in the value part.

Example 3. Latitude is a search key for geo table (see geoLat.ind) and let
be 3 poilD: 23456XX, 45678YY, 67890ZZ for which the latitude is 48.3. Value

58 V. VARGA, A.S. DARABANT, L. TAMBULEA, AND B. PARV

48.3 will be stored once in the Key part and Value part will store the list of
poilD-s: 23456XX;45678YY;67890Z%Z, see Figure 4.

Index file Master file

Key Value
Key Value

48.3 | 23456XX;45678YY; 6789077

A 1 1

23456XX | ... 483
45678YY 383
67890ZZ 383

FIGURE 4. Inverted index example

3.1.2. Make search key unique. For each search key many key-value records
are built, one for each record in the master with the same search key value.
This is done by making search key unique, adding a record-identifier. In other
words, Key = (search key + record identifier) and Value = NULL.

Example 4. For the example above, 3 different key-value records are built:
(48.3#23456XX, NULL); (48.3#45678YY, NULL); (48.3#67890ZZ, NULL);
See solution on Figure 5.

The ”#” is used to separate the key part from unique identifier. The use of
a separator can be avoided if constant (maximum) key-length is implemented.
Shorter than maximum length keys are padded with spaces/blanks.

The option of making the search key unique, which is widely used for
indexing relational databases, adds extra storage overhead for keys and extra
custom code for insertion/deletion operations in the master file.

Inverted index option compared to making the search key unique adds
low space overhead and no extra cost for queries, but may need extra code
for handling long lists; also, deletion of a record in the master file may be
expensive.

Compared to the relational model, finding a record in a key-value store
using an index needs an additional read (GET) operation.

STORING LOCATION-BASED SERVICES’ DATA IN KEY-VALUE STORE 59

Index file Master file

Key Value

Key Value
48.3#23456XX

45678YY | ... 48.3..eenne
48.3#45678YY

67890ZZ | ... 483
48.3#67890ZZ

23456XX | ... 483

FIGURE 5. Making key unique example

3.2. Custom solution for spatial data. In this section we consider the
design of the same environment in a key-value store. The divisions of the
Earth in squares or rectangles called Regions, have to be stored in a Regions
key-value file. Each region will have a unique key: the RegionID, so Key =
RegionID.The Value part will have the following structure:

UpperLeftlat,UpperLeftlong,LowerRightLat,LowerRightLong

The poi-s, events, show times, can be stored in Pois key-value file. The
aggregation of objects can be designed in different ways. One solution is a
hierarchical style which can be described using regular expressions as follows:

geo(poix, latitude, longitude);

poi(poiName,poilanguage,Categories,Address,Zip,City,event*);
event (eventName, language, category, showtimex);
showtime(startTime, endTime);

Pois.Key = Region ID, Pois.Value = concatenation of geo composite
objects, including poi-s, events, show times. By storing objects in this manner,
information for one region is contained in a single object, so join operations
are not necessary. The solution is usable, if such a geo object fits in memory.
If it does not fit in memory, the region can be divided into more regions. One
can use multiple division dimensions: regions, time, regions + time, etc.

Usually queries on spatial data involve not just a point (latitude, longi-
tude), but a search area around the given point. This implies an additional
radius. According to the location of the point in the region, multiple cases
arise.

60 V. VARGA, A.S. DARABANT, L. TAMBULEA, AND B. PARV

e the point and the search radius are completely contained in a single
region
e the point and the search radius are contained in multiple regions
In a real system the search radius should be smaller than the region di-
mensions r <[< L, where r is the search radius, [and L are the 2 dimensions
of the region’s bounding box. As a result a search area will not overlap more
than four neighbourhooding regions.

4. QUERYING A KEY-VALUE STORE

The mapping of queries needs to take into account the structure of the
metadata, described in the previous section.

4.1. Generic style. In this case, there is a general solution: implement the
SELECT statement over a key-value store (for more details see [15, 11]). This
general solution is not discussed here.

The remaining part of this section discusses separately how to transform
one-table queries and multiple-table queries, respectively. In the case of one-
table queries, search by unique key is mapped straightforward, using GET on
master and index files.

Search by non-unique key may use one of the following:

o Use of inverted indezes.
o Make search key unique by adding a record-identifier.

4.1.1. Inverted index for non-unique index. The search process is straightfor-
ward; the programmer has to handle the list of primary keys from key-value
index files and retrieve every record from key-value master with the searched
key, using GET.

4.1.2. Make search key unique by adding a record-identifier. The search is
much difficult, because the search for one key value is transformed to a range
query and range queries are not implemented yet in key-value stores [16, 12].
In our opinion, B+ Tree index is suitable for range queries, if the key-value
store allows direct access to the tree.

Example 5. The search of all poilD-s for latitude 48.3 is transformed to the
following range query:

minKey=48.3# + possible min value

maxKey=48.3# + possible max value

minKey <= Key <= maxKey
If the index file on Key is clustered, the minKey is found using the B+ tree
and the data file is scanned sequentially from there until the record with
Key > maxKey is encountered.

STORING LOCATION-BASED SERVICES’ DATA IN KEY-VALUE STORE 61

In the case of multiple-table queries, each specific query is mapped in
a custom way. However, some general guidelines can be given. Generally
speaking, such a complex query is executed in a five-step process, as follows:

(1) apply the filter for each table, which reduces to a one-table query;

(2) establish a join order;

(3) compute the join in memory if possible; if not, apply hash join or other
join types;

(4) compute GROUP BY operation of the query;

(5) compute SORT operation of the query.

For the implementation of these operation see [15, 11].

4.2. Custom solution for spatial queries. If the division in regions is
adequate, the search is restricted to locate the location point of the current
user in a region (this will need an index file on longitude and/or latitude),
then read from Regions key-value file by regionlD, and the complex object
will be in the corresponding Value.

5. CONCLUSIONS AND FURTHER WORK

In this paper we investigated the opportunity of using key-value stores as
a replacement for traditional relational DBMSs. Two issues were discussed:
data design and query mapping, together with the additional costs incurred.
Future work on this topic will include implementation and testing issues on
concrete spatial data models.

6. ACKNOWLEDGEMENT.

The author Viorica Varga has been fully supported by Romanian Ministry
of Education in the frame of Research Grant CNCSIS PCCE-55/2008.

This work is also supported by Nokia Romania - Methods (Techniques)
for Efficiently Searching in Spatial Data.

REFERENCES

[1] D. Agrawal, A. E. Abbadi, S. Antony, S. Das: Data Management Challenges in Cloud
Computing Infrastructures, Databases in Networked Information Systems, 6th Interna-
tional Workshop, DNIS 2010, Aizu-Wakamatsu, Japan, March 29-31, pp. 1-10

[2] M. Berezecki, E. Frachtenberg, M. Paleczny, K. Steele: Many-core key-value store, in
Green Computing Conference and Workshops (IGCC), 2011 International, Orlando,
July, pp. 1-8

[3] C. Bunch, J. Kupferman, C. Krintz Active Cloud DB: A. Database-Agnostic HTTP
API to Key-Value Datastores. In UCSB. CS Technical Report 2010-07

[4] R. Cattell: Relational Databases, Object Databases, Key-Value Stores,
Document Stores, and Extensible Record Stores: A Comparison,
http://www.odbms.org/download/Cattell. Dec10.pdf

62

(5]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

V. VARGA, A.S. DARABANT, L. TAMBULEA, AND B. PARV

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra,
A. Fikes, R.E. Gruber: Bigtable: A Distributed Storage System for Structured Data.
In: OSDI. 2006, pp. 205218

B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.A. Ja-
cobsen, N. Puz, D. Weaver, R. Yerneni: PNUTS: Yahoo!s hosted data serving platform.
Proc. VLDB Endow. 1(2), 2008, pp. 12771288

A.S. Darabant, V. Varga, L. Tambulea, B. Parv: Location Based Application Perfor-
mance Study in mySQL, to be appeared in Studia Universitatis ” Babes-Bolyai” Cluj-
Napoca, Informatica.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, W. Vogels: Dynamo: amazons highly available key-value
store. SOSP. 2007, pp. 205220

B.G. Lindsay, L.M. Haas, C. Mohan, P.F. Wilms, R.A. Yost: Computation and com-
munication in R*: a distributed database manager. ACM Trans. Comput. Syst. 2(1),
1984, pp. 2438

H. Garcia-Molina, J.D. Ullman, J. Widom Database Systems: The Complete Book,
Prentice Hall, 2008.

R. Ramakrishnan, J. Gehrke, Database Management Systems, 3rd Edition, WCB
McGraw-Hill, 2003.

S. Ramabhadran, S. Ratnasamy, J.M. Hellerstein, S. Shenker Prefix Hash Tree:
An Indexing Data Structure over Distributed Hash Tables, Technical Report, 2004
http://berkeley.intel-research.net/sylvia/pht.pdf

J.B. Rothnie Jr., P.A. Bernstein, S. Fox, N. Goodman, M. Hammer, T.A. Landers, C.L.
Reeve, D.W. Shipman, E. Wong: Introduction to a System for Distributed Databases
(SDD- 1). ACM Trans. Database Syst. 5(1), 1980, pp. 117

T. Shimizu, M. Yoshikawa Full-Text and Structural Indexing of XML Documents on
B+-Tree, IEICE TRANSACTIONS on Information and Systems, Vol. E89-D(2006),
No.1, pp. 237-247

A. Silberschatz, H. Korth, S. Sudarshan Database System Concepts, McGraw-Hill, New
York, 2006.

Range queries in key-value systems, http://groups.google.com/group/project-
voldemort/browse_thread /thread/cad4888b492d897f

BABES-BoLYAl UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, 1

M. KOGALNICEANU STR., CLUJ-NAPOCA 400084, ROMANIA

E-mail address: ivarga@cs.ubbcluj.ro
E-mail address: dadi@cs.ubbcluj.ro
E-mail address: leon@cs.ubbcluj.ro

E-mail address: bparv@cs.ubbcluj.ro

