
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

DYNAMICS WITHIN A LAN DISTRIBUTED VIDEO

PROXY-CACHE

CLAUDIU COBÂRZAN AND DIANA MAN

Abstract. We introduce a fuzzy clustering approach that uses a well
known algorithm to partition the clients in a LAN. This is done in the
context of a distributed video proxy-cache that is able to vary the number
of active nodes based on LAN conditions and client behavior.

1. Introduction

Video proxy-caching within LANs is an often deployed solution that tries
to tackle some of the problems due to increasing demand for multimedia and
especially audio-video content from the Internet.

We defined a distributed system that aims at providing better support for
clients within a LAN by varying the number of active nodes depending on a
number of conditions.

In the following we will make an overview of the system dynamics and
introduce a new approach to determining the node that should host a new
proxy-cache in case another one is needed. The new approach uses fuzzy
clustering to cluster the existing nodes in the LAN with the cluster centers
hosting the running proxy-caches. The number of clusters equals the number
of running proxy-caches minus one, since we consider that the systems starts
with one active proxy-cache.

2. Overview of the Proxy-Caching System

In [3] we introduced a video-proxy-caching system that starts with a single
active node, but can add and then remove nodes from the system as necessary.
Adding a new node to the proxy-caching system is done when new computing
and/or storage resources are needed to service client requests. Removing nodes
from the system takes place when the request volume drops and fewer nodes
can deal with the existing clients.

Received by the editors: May 15, 2011.
2000 Mathematics Subject Classification. 68-06, 68M14.
1998 CR Categories and Descriptors. H.3.4 [Information Storage and Retrieval]:

Systems and Software – Distributed systems.
Key words and phrases. video proxy-cache, fuzzy, fuzzy clustering.

115

116 CLAUDIU COBÂRZAN AND DIANA MAN

2.1. System Dynamics.

The system is implemented by using two entity types: dispatchers and
daemons. The dispatchers run on every proxy-cache node and have coordi-
nator responsibilities: they contact their siblings or origin servers in order to
solve requests they can’t service from the local cache. Also, they select the
node that will host a new proxy-cache, when such an operation is required.
The daemons run within a LAN on the nodes that can become proxy-caches
(potentially on every node). They also act as on-site proxies by selecting one
dispatcher from the list of active ones to which a client request is forwarded.

The conditions that trigger a split operation (that adds a new node), as
well as a hibernate or shut down operation (that remove a node) are detailed
in [3] and in [4]. When performing a split operation, a dispatcher selects the
“best” daemon to host the proxy-Cathe code and possibly some of the data
from the local cache. Leaving the system is done by a shut down operation that
stops the proxy-cache and its dispatcher and discards any locally stored data.
A proxy-cache can enter a dormant state in which it only services requests
for objects it already stores by performing a hibernate operation. If a split
operation has to be performed and there are hibernating nodes, one of those
nodes will be reactivated.

Deciding which nodes will be shut down, put in hibernation or reactivated
is done by their rank value according to the conditions in [3] and [4]. The
ranking mechanism was introduced in [4] and refined in [2] at node level. The
idea behind it is to rank the active or hibernating proxy-caches by the volume
of served data. In [2] we propose differentiating between data sources - local
cache, siblings or origin servers - so that the largest rank is assigned to the
node(s) serving the largest amount of data from within the local cache when
reported to the amount of data served from sibling caches and remote servers.

2.2. Cache Operations.

All cache specific operations (add a new object, discard, move or replicate
an object) are done according to the utility of the objects. The utility value
is computed when an object first enters the cache, but varies over time ac-
cording to several characteristics: size, number of requests, time of the last
request etc. The considered characteristics have different weights. Those
weights are either static (fixed for the life time duration of the proxy-cache)
or are dynamically generated (the values may change during the life time of
the proxy-cache). In [9] and [5] we proposed using genetic algorithm when de-
termining the weighting values so that the system’s efficiency (measured with
byte-hit-rate as metric) is maximized. The byte-hit-rate is computed as ratio
between the data volume served from within the cache and the data amount
served from the cache, siblings and servers (total amount of served data).

DYNAMICS WITHIN A LAN DISTRIBUTED VIDEO PROXY-CACHE 117

A video object oij ∈ LCi held in the cache Pi ∈ P (1 ≤ j ≤ q, q - the
number of cached objects at node i) is defined in [4] as:

oij =(size(oij), duration(oij), bitRate(oij),

qualityV alue(oij), TLA,HC,COST)
(1)

(LCi stands for the contents of the local cache while P represents the set of
active proxies).

The proxy-cache holds information on the size, duration, encoding bit rate
and quality value of the video, where the quality value (a real number between
0 and 1) is the measure of the object’s quality (based on characteristics of the
video object like resolution, color information etc.) to different clients.

Also, three vectors are used to hold additional data:

• the moments in time when the object was last requested - the TLA
(Time of Last Access) vector
(e.g. timeLastAccess(o1,3)N2 represents the moment the 3rd object
cached at node P1 has been last requested from the node N2);
• the number of requests for the object - the HC (Hit Count) vector

(e.g. hitCount(o1,3)N2 represents the number of times the 3rd object
cached at node P1 has been requested from node N2);
• the cost of streaming the object from the cache to the requesting client

- the COST vector
(e.g. cost(o1,3)N2

represents the cost of streaming the 3rd object in the
cache at node P1 to the node N2. It is computed as follows:

(2) cost(o1,3)N2
=

αP1,N2

bitRate(o1,3)
duration(o1,3)

meaning “the cost of streaming the 3rd object from the cache at node
P1 to the node N2 equals the amount of bandwidth needed to stream
that particular object” - αP1,N2 denotes the amount of bandwidth avail-
able between node P1 and node N2).

3. A New Approach to System Expansion

We propose a new approach for determining the node that will host a new
proxy-cache. This approach is based on fuzzy clustering.

Clustering is the division of a data set into subsets (clusters) such that,
similar objects belong to the same cluster and dissimilar objects to different
clusters. In real applications, there is no obvious boundary between clusters
so that, fuzzy clustering is often better. In fuzzy clustering the object can
belong to more than one cluster so, it has a degree of belonging to clusters, as
in fuzzy logic.

118 CLAUDIU COBÂRZAN AND DIANA MAN

A hard clustering algorithm allocates each object to a single cluster. Thus,
traditional clustering divides data objects in partitions. Fuzzy clustering ex-
tends this notion to associate each data object with every cluster using a
membership function. The output of the hard clustering algorithm is a par-
tition, whereas the one of fuzzy algorithm is a clustering. In fuzzy clustering
each cluster is a fuzzy set of all the patterns. In general the performance of
fuzzy clustering algorithms is superior to that of the corresponding hard algo-
rithms. Fuzzy clustering has proved successful in many relevant applications
from real world.

The most popular fuzzy clustering algorithm is FCM - Fuzzy c-Means
[6, 1]. It is a data clustering technique in which each data point belongs to a
cluster to some degree that is specified by a membership grade. The algorithm
is also known as Fuzzy ISODATA or Fuzzy K-Means.

Given a set X = {x1, x2, ..., xn} ⊂ <p of sample data, the aim of the
algorithm is to determine the prototypes (cluster centers) in such a way that
the objective function is minimized.

In our case the set X is composed by the set of nodes (N).
The objective function J : NX[1,∞)→ R is:

(3) J(c, q) =

c∑
i=1

Ji =

c∑
i=1

(

n∑
k=1

uqikd
2
ik)), q ∈ [1,∞)

subject to:

(4)
n∑

k=1

uik > 0, ∀i ∈ {1, 2...c},
c∑

i=1

uik = 1, ∀k

where uik stands for the membership degree of datum xk to cluster i, dik is
the distance of datum xk to cluster i, represented by the prototype pi and c
is the number of clusters. The parameter q is a weighting exponent (fuzziness
exponent). Usually q = 2 is chosen. At q = 1, FCM collapses to HCM
algorithm [7].

The first constraint guarantees that no cluster is empty and the second
condition ensures that the sum of the membership degrees for each datum
equals 1.

Also, this constraint corresponds to a normalization of the membership
per datum. As a consequence of both conditions no cluster can contain the
full membership of all data points. Thus, the membership degrees for a given
datum formally resemble the probabilities of its being a member of the corre-
sponding cluster.

The output of the FCM algorithm is not a partition, thus: Ci
⋂
Cj 6=

∅, i 6= j.
There are two necessary conditions for J to reach a minimum:

DYNAMICS WITHIN A LAN DISTRIBUTED VIDEO PROXY-CACHE 119

(5) pi =

∑n
k=1 u

q
ikxk∑n

k=1 u
q
ik

(6) uik =
(1
dik

)1/(q−1)∑c
j=1(

1
djk

)1/(q−1)

where dik is the distance between object xk and the center of cluster Ci [8].
The FCM Algorithm:

1. Initialize the membership matrix U with random values between
0 and 1 within the constraints of (2).
2. Calculate c cluster centers $p_i, i=1..c$ using (3).
3. Compute the objective function according to (1). Stop if
either it is below a certain threshold level or its improvement
over the previous iteration is below a certain tolerance.
4. Compute a new U using (4).
5. Go to step 2.

The FCM algorithm assumes that the number of clusters c is known. In real
cases, this parameter is not known and must be determined. The traditional
approach to determining c is to evaluate a certain global validity measure of the
c-partition for a range of c values and then pick the value of c that optimizes
the validity measure. An alternative is to perform progressive clustering where
clustering is initially performed with an over specified number of clusters.
After convergence, bad clusters are eliminated, compatible clusters are merged
and good clusters are identified [10].

The system we defined starts with one proxy-cache that will be perma-
nently active but it can add proxy-caching nodes whenever necessary. That is
why we set the number of clusters to 1 when the first additional proxy-cache is
added. In this situation we have to determine the center of the cluster formed
by all the nodes in the LAN (the set N) which will be the node hosting the
second proxy-cache. However there is a constraint: in order to host the new
proxy-cache, the center has to have a running daemon. Whenever there are
more than one active proxy-cache, the number of clusters equals the number
of active proxy-caches minus one, and the nodes hosting them are the centers
of those clusters (if the designated centers have running daemons). Whenever
a split operation is performed, the nodes in the LAN are re-clustered and the
number of clusters increases by one.

We will consider the distance between the node xk and the center of cluster
Ci the report between the total cost of streaming the stored all objects and
the total number of requests for the objects stored on the node. This report
must be minimized.

120 CLAUDIU COBÂRZAN AND DIANA MAN

4. Conclusions and Future Work

We introduced a new method of determining the nodes that will host a
new proxy-cache in a dynamic distributed video proxy-caching system. This
methods clusters the existing clients based on the cost of delivering objects to
those clients as well as client activity (number of requests). As future work to
intend to refine the conditions for determining those nodes by also considering
the time when the client requests were made and also to develop algorithms
for moving data between the active nodes (data move, data replicate) that
consider client clusters.

References

1. James C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Kluwer
Academic Publishers, Norwell MA, USA, 1981.

2. Caudiu Cobârzan, Node Ranking in a Dinamic Distributed Video Proxy-Caching Sys-
tem, KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES Proceedings
of the International Conference on Knowledge Engineering, Principles and Techniques,
KEEPT2007, 6-8 June 2007, Cluj-Napoca, Romania (Str. Haşdeu nr. 45, 400371, Cluj-
Napoca, Romania), Presa Universitară Clujeană/Cluj University Press, 2007, pp. 298–
306.

3. Claudiu Cobârzan, Dynamic Proxy-Cache Multiplication inside LANs, Euro-Par 2005,
Lecture Notes in Computer Science, vol. 3648, Springer, 2005, pp. 890–900.

4. Claudiu Cobârzan and László Böszörményi, Further Developments of a Dynamic Dis-
tributed Video Proxy-Cache System, Proceedings of the 15th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP 2007), IEEE
Computer Society, 2007, pp. 349–357.

5. Claudiu Cobârzan, Alin Mihăilă, and Cristina Mihăilă, Dynamics of a Utility based
Distributed Video Proxy-Cache, 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC2008), September 26-29, 2008, Timisoara,
Romania, 2008, (accepted for publication in IEEE post-proceedings).

6. J.C. Dunn, A fuzzy relative of the isodata process and its use in detecting compact well-
separated clusters, Journal of Cybernetics 3 (1973), no. 3, 32–57.

7. A.K. Jain, M.N. Murty, and P.J. Flynn, Data clustering: A review, ACM Computing
Surveys 31 (1999), no. 3, 264–323.

8. Jan Jantzen, Neurofuzzy modelling, Technical Report 98H874 (nfmod), Technical Uni-
versity of Denmark, 1998.

9. Cristina Mihăilă and Claudiu Cobârzan, Evolutionary approach for multimedia caching,
19th International Workshop on Database and Expert Systems Applications (DEXA
2008), 1-5 September 2008, Turin, Italy, IEEE Computer Society, 2008, pp. 531–536.

10. Horia F. Pop, Data analysis with fuzzy sets: a short survey, Studia Universitatis Babes-
Bolyai, Series Informatica XLIX (2004), no. 2, 111–122.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: {claudiu,mandiana}@cs.ubbcluj.ro

