STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

EXTENDING UML STATE DIAGRAMS WITH BEHAVIORAL
PATTERNS

DAN MIRCEA SUCIU

ABSTRACT. State diagrams generated by reverse engineering based on the
execution of software applications or those that model Interactive Voice
Response (IVR) applications are usually very dense and the benefit of us-
ing super-states or orthogonal regions to increase their readability is poor.
We propose to extend state diagrams with behavioral patterns, which are
powerful constructions that could significantly reduce the number of dis-
played transitions.

1. INTRODUCTION

1.1. UML State Diagrams. UML State Diagrams [3] have their origins in
finite state machines. Software systems with complex behavior were modeled
in dense state machines which were difficult to read and understand. In or-
der to increase their readability the super-states and orthogonal regions were
proposed [1]. Both constructions help designers to build less complex state dia-
grams, with a smaller number of states and transitions, without affecting their
expressibility power. Anyway, there are research fields where state diagrams
still need to be refined, the current graphical syntax being insufficient to deal
with tens or hundreds of states and transitions. In [5] is presented a method
of generating state diagrams by observing the behavior of a software system
based on its inputs and outputs. For very simple software systems, which deal
with two or three variables, this kind of reverse engineering is straight forward
even in the absence of super-states or orthogonal regions. As far as the num-
ber of variables is increasing, the complexity of the resulted state diagrams is
exponential. In this context, one idea is to find a way to group together states
having similar behavior, and enclose them in a super-state [2]. In practice we
can find many such groups to which a state belongs, but a super-state could

Received by the editors: April 10, 2011.

2010 Mathematics Subject Classification. 68N30.

1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering — Coding
Tools and Techniques D.2.7 [Software] : Software Engineering — Distribution, Maintenance
and Enhancements.

Key words and phrases. UML, state diagrams, finite state machines, behavior modeling.

77

78 DAN MIRCEA SUCIU

cover only one group at a time. This is a restriction that is solved by our
proposed concept of behavioral pattern presented in current paper.

1.2. IVR applications and state diagrams. Another popular usage of
state diagrams is for designing Interactive Voice Response (IVR) applications.
IVR is a technology that allows a computer to decode humans requests via a
telephone keypad or by speech recognition and which can respond with pre-
recorded or dynamically generated audio. While a traditional IVR depended
upon proprietary programming or scripting languages, the modern IVR ap-
plications are generated in a similar way to Web pages, using standards such
as VoiceXML,[8] and State Chart XML (SCXML) [7]. SCXML provides a
generic state-machine based execution environment based on Harel Statechart
elements [1]. Commons SCXML is an implementation aimed at creating and
maintaining a Java SCXML engine capable of executing a state machine de-
fined using a SCXML document, while abstracting out the environment in-
terfaces. For professional IVR applications with medium or high complexity,
the corresponding state diagrams contain tens of states and hundreds or even
thousands of transitions. The graphical view of these state diagrams is in
many cases useless, due to their complexity. Our solution does not just in-
crease the readability of such diagrams, but allow designers to define patterns
which could be easily reused in subsequent IVR applications.

1.3. Paper structure. The next section describes the concept of behavioral
pattern and makes a comparison with the super-state concept introduced by
Harel. The third section presents a case study using the state configuration of a
medium-size IVR application and shows how behavioral patterns dramatically
decrease the number of transitions, while the super-states are not useful in this
context. The last section describes the potential of behavioral patterns and
some ways of extending them.

2. BEHAVIORAL PATTERNS

The left diagram from figure 1 shows a simple state-diagram containing 3
states and 7 transitions. We can observe that every time an event reset occurs,
the system enters in state A. At the same time, if the system is in state B
or C, the event Event occurs and the logical expression cond is evaluated
to TRUE, the system enters again in state A. We can say that in the first
case the system behaves in the same way when an event reset occurs, and in
the second case it behaves in the same way if it is in some particular states
(B or C) and the event Event occurs. These are, in fact, two examples of
behavioral patterns. If we want to use super-states in order to make the
initial diagram more readable, we can group the states B and C under the

EXTENDING UML STATE DIAGRAMS WITH BEHAVIORAL PATTERNS 79

reset

[]

SuperState2 r

SuperState |— Ewvent [cond = TRUE] / Action1

m‘ Eventl
7
]

FIGURE 1. Using super-states to decrease the number of transitions

Event [cond = TRUE] / Action1

Event [cond = TRUE] / Action1

FIGURE 2. Sample state diagram

same super-state (let’s call it SuperState) and nest the result together with
the state A into another super-state (called SuperState2). The result of
this operation in presented in the right diagram of figure 1. Consequently, the
number of transitions decreased to 4 and, even if the final number of states is
bigger now, the diagram is clearer than the initial one.

In Figure 2 we have the same initial state-diagram with only one modi-
fication: the transition triggered by event reset from state B to state A was
deleted. This change makes impossible the usage of both super-states iden-
tified in the previous example. For the initial behavioral pattern we need to
group together the states A and C and for the second one we need to group
the states B and C. Because we cannot define super-states which have only a
part of their sub-states in common, we are forced to use only one super-state.
As a consequence, the final number of transitions we obtain is 5, more than
in the previous example, even if we initially cut one transition.

Such anomalies are excluded in case of using specific graphical construc-
tions to model behavioral patterns. Our proposal is shown in figure 3: we
use doubled rounded rectangles to specify behavioral patterns and they are
positioned in a separate area (called pattern area) together with modeled tran-
sitions and their state targets. In our example, state A was copied two times
inside the pattern area to help the definition of two patterns: Patternl, which
describes the behavior of the system when reset event occurs, and Pattern2,

80 DAN MIRCEA SUCIU

!

Configuration

=9
AN

behavioral

7 pattemns

—— generalization

Patterns Event2 [+

*® Patternt

pattems

|
/ definition area
Event [cond=TRUE] / Action1 @

— B)

Patterns
[#Pattern2

Ficure 3. Using behavioral patterns to decrease the number
of transitions

which describes the behavior of the system when event Event occurs and the
system is in states B or C. In order to specify that a state follows a specific
pattern, a new section is introduced in the graphical representation of a state
called Patterns.

It makes sense to define also a generalization relation between patterns.
In our example, there is a generalization relation between Pattern2 and Pat-
ternl, which means that the behavioral pattern Pattern2 inherits the entire
behavior described by Patternl. Because the states C and B react at reset
event in the same manner as A but, at the same time, react in a similar way in
the presence of event Event and when the logical expression cond is evaluated
to FALSE, they implement both Patternl and Pattern2. But Pattern2
inherits the entire behavior of Patternl, so only Pattern2 is enough to be
specified as implemented pattern by C and B. If we are in conditions described
by the state diagram from figure 2, there is no generalization relationship be-
tween Pattern2 and Patternl. In this case, Patternl should be explicitly
specified for state C, and the total number of displayed transitions remains
the same. Therefore, the anomaly which appears in case of using super-states
is solved.

3. CASE STUDY

In order to validate the efficiency of behavioral patterns, we extended
Active CASE tool ([5]) with the following features:

e the root state of each class behavioral model has by default a pattern
definition area (in order to not be confounded with an orthogonal
region, it has a distinct background color);

e two new graphical elements are available for statechart editing: be-
havioral patterns and pattern generalization - each regular state was

EXTENDING UML STATE DIAGRAMS WITH BEHAVIORAL PATTERNS 81

filed{Goodbye)
i
error |

L4

forceTouchMode

filled(Help) [stateTylpa Helpl

help(Help) [stateType 3 Help]
L

error [stateType = N_greater_1_less_TT]
- T =

filed(Switch Mode) [stateType = SwitchMode]

[switchTouchMode |
L)

FIGURE 4. Automatically detected behavioral patterns

extended with an optional compartment for displaying the list of im-
plemented patterns;

e a pattern generator, which automatically detects and creates behav-
ioral patterns for a given statechart.

As a case study we selected the state diagram used for implementing a
medium-size IVR application, containing 47 states and 708 transitions. The
graphical representation of this state diagram shows a tangled net of transi-
tions without any value for IVR designers. The pattern generator detected 30
distinct behavioral patterns, and the resulting statechart had just 195 tran-
sitions. So, more than 500 transitions where removed from the graphical
representation of the state diagram using behavioral patterns.

Figure 4 shows two of the 30 generated patterns. Patternl describes
the behavior implemented by 35 states, so using this pattern 175 transitions
were extracted from original state model. The second pattern, Pattern2, is
implemented by 34 states, which means a number of 68 transitions replaced.
Both patterns, together, cover almost a half of the total amount of replaced
transitions. Not all generated patterns must be preserved, because many of
them could not have a relevant impact in for the initial state diagram.

4. CONCLUSIONS AND FUTURE WORK

We proved that behavioral patterns are sensitive superior to super-states,
especially in those software domains which deal with state diagrams having
a high level of complexity. Anyway, behavioral patterns and super-states
can leave together inside the same state diagram. It is up to the system
designer when to use super-states and when to use behavioral patterns in
order to make the model clearer and with a high level of readability. Usually,
normal state diagrams having up to 10 concrete states do not need behavioral

82 DAN MIRCEA SUCIU

pattern definition. There are some other interesting applications of behavioral
patterns, which worth to be subject of future research, like:

e re-definition of state diagrams inheritance using behavioral patterns;

e support for automatic detection of rare events using statecharts ([4],
[6]) by detecting any anomaly in behavioral patterns detected in dif-
ferent moments in time;

e definition of behavioral pattern at orthogonal region level, not at state
level.

REFERENCES

[1] David Harel, ”Statecharts: A Visual Formalism for Complex Systems”, Science of Com-
puter Programming, vol.8, no. 3, pp. 231-274, June 1987

[2] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, Pamela Zave,
”Matching and Merging Statechart Specifications”, International Conference on Soft-
ware Engineering, Proceedings of the 29th international conference on Software Engi-
neering, pp 54-64, 2007

[3] Object Management Group, "OMG Unified Modeling Language Specification, Super-
structure version 2.3”, May 2010 (available at http://www.omg.org/spec/UML/2.3/)

[4] Vasile-Marian Scuturici, Dan-Mircea Suciu, Romain Vuillemot, Aris Ouksel, Lionel
Brunie, ”Detecting Anomalies in Data Streams using Statecharts”, Extraction et Ges-
tion des Connaissances (EGC’10), Revue des Nouvelles Technologies de I'Information,
RNTI-E-19, Hammamet, Tunis, January 2010, pp 635-636

[5] Dan Mircea Suciu, ”Reverse Engineering and Simulation of Active Objects Behavior”,
Knowledge Engineering, Principles and Techniques - ”KEPT-2009” Selected Papers,
”Babes-Bolyai” University of Cluj-Napoca, pp. 283-290 , July 2-4 2009

[6] Dan Mircea Suciu, Romain Vuillemot, Marian Scuturici, ”Visual Detection of Rare
Events Using Statechart”, IEEE VisWeek Compendium, VAST Contest, Piscataway,
NJ, IEEE. October 10, 2009

[7] World Wide Consortium, ”State Chart XML (SCXML): State Machine Notation for
Control Abstraction”, 16 December 2010 (available at http://www.w3.org/TR/scxml/)

[8] World Wide Consortium, ”Voice Extensible Markup Language (VoiceXML) 3.07, 16
December 2010, (available at http://www.w3.org/TR /voicexml30/)

BABES-BoLyAl UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, 1 M. KOGALNICEANU
ST., 400084 CLUJ-NAPOCA, ROMANIA
E-mail address: tzutzu@cs.ubbcluj.ro

