
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

USING IMPACT ANALYSIS BASED KNOWLEDGE FOR

VALIDATING REFACTORING STEPS

ISTVÁN BOZÓ, MELINDA TÓTH, MÁTÉ TEJFEL, DÁNIEL HORPÁCSI,

RÓBERT KITLEI, JUDIT KŐSZEGI, AND ZOLTÁN HORVÁTH

Abstract. In the life cycle of a large software product the source code
often has to be changed to fit to new requirements, which can be aided by
refactorings. In order to minimise the possibility of breaking the function-
ality of the code, various test suites are used. In this paper, we present a
method for examining which test cases are affected by doing a refactoring
on the code. If we find that the outcome of a particular test case is not
changed by the refactoring, the test case does not need to be run, which
might make testing more cost effective. Also, we validate the refactoring
by checking that the affected functions behave identically pre and post the
transformation. This system is based on a language specific model that is
designed to capture knowledge about the software product acquired using
impact analysis.

1. Introduction

The refactoring [5] tools try to preserve the properties of the transformed
programs using language specific semantic knowledge about the source code
and to ensure the safety of statically performed transformations. In case of in-
dustrial sized software and some programming languages the usage of complex
static analysis sometimes is not enough to decide whether the transformation
is safe, and some rarely used language elements can make it impossible. There-
fore it is crucial to retest the system after a major change.

In case of the industrial sized software components the developers prefer to
perform the necessary refactorings manually against applying the automatic
refactoring, even if the manual refactoring is more error prone. The main
reason for this situation is based on the fact that the developer can not follow
the changes performed on the source code by the refactoring tool. In order to

Received by the editors: April 10, 2011.
2010 Mathematics Subject Classification. 68Q99.
1998 CR Categories and Descriptors. [F.3.2]: Theory of Computation, Logics and Mean-

ings of Programs, Semantics of Programming Languages – Program analysis.
Key words and phrases. Erlang, regression test, refactoring validation, property

generation.

57



58 BOZÓ, TÓTH, TEJFEL, HORPÁCSI, KITLEI, KŐSZEGI, CSÖRNYEI, HORVÁTH

convince the developer about the reliability of refactorings we have to analyse
the impact of the transformations while reducing the cost of the testing pro-
cess. By using impact analysis we can select the code parts that are affected
by a transformation and based on this knowledge we can minimise the cost of
regression test.

Our research focuses on Erlang [4], a dynamically typed language. Many
of its semantic rules are also dynamic, that makes the static semantic knowl-
edge based analysis hard. In this paper, we examine the various connections
between refactorings of the code and test cases. We explore the possibility
of leaving some test cases out if we can argue that the refactoring does not
change the outcome of the test. We also investigate how we can give further
guarantees that the refactoring has successfully transformed the source code
using random parameter space testing and metrics based validation.

The paper is structured as follows. In Section 2, we show a motivating
example. In Section 3 we present the tool that will store the knowledge we
gather about Erlang source code; Section 4 describes change impact analysis
based property selection; Section 5 uses the same analysis to find functions
that are affected by a code transformation and introduce a validation property.
Section 6 discusses related work and Section 7 concludes the paper.

2. Motivating example

1 −module( exampl ) .

2 −export ( [ c a l c /2 , prop1 /0 , prop2 /0 ] ) .

3

4 c a l c (X,Y)−>
5 Mul = X∗Y,

6 Sum = X+Y,

7 {Mul , Sum} .

8

9 prop1 ( )−>
10 ?FORALL({A, B} ,

11 { i n t ( ) , i n t ( )} ,

12 element (1 , c a l c (A, B) ) =:= A∗B) .

13 prop2 ( )−>
14 ?FORALL({A, B} ,

15 { i n t ( ) , i n t ( )} ,

16 element (2 , c a l c (A, B) ) =:= A+B) .

Figure 1. A module with two QuickCheck properties



IMPACT ANALYSIS BASED REFACTORING VALIDATION 59

1 c a l c (X,Y)−>
2 Mul = mul (X,Y) ,

3 Sum = X+Y,

4 {Mul , Sum} .

5

6 mul (X,Y) −>
7 X∗Y.

Figure 2. A part of calc is extracted into mul

In Figure 1, we see an Erlang module with a function calc that takes
two parameters. There are two statements prop1 and prop2, formalised as
QuickCheck properties [10]. The function itself calculates the sum and the
product of its arguments, and returns the pair of the calculated values.

The first property states that the first element of the returned tuple con-
tains the product of the two arguments. For this, it uses a pair of two
generators (int()) and binds the generated values to A and B respectively.
If QuickCheck is installed, the module test case can be invoked by calling
eqc:quickcheck(exampl:prop1()), which will use the generators to produce
100 random pairs of integers, and tests the property. The second property,
quite similarly, tests the second component of the return value of the function
calc.

There are several refactorings that can be applied to the function calc.
As calc is not a good name, one idea is to rename the function. Another
possibility is to extract a portion of the function calc into another function.
For example, the production on line 5 may be extracted to a new function
mul as seen in Figure 2. The use of this refactoring could change the first
element of the return value of function calc and does not have any affect
on the second element. Since property prop2 uses only the second element
of the return value, it does not depend on the changed source code and it is
unnecessary to retest it.

3. Layers of knowledge for impact analysis

3.1. Source code representation. RefactorErl [7] is a source code analyser
and transformer tool for Erlang [4]. It builds an abstract syntax tree over
the source code, then uses several semantic analysers that enrich it into a
Semantic Program Graph (SPG) by adding various other levels of knowledge.
Information gathered by the analysers include connections between function
applications and definitions (revealing function calls), between definitions and
uses of variables etc.



60 BOZÓ, TÓTH, TEJFEL, HORPÁCSI, KITLEI, KŐSZEGI, CSÖRNYEI, HORVÁTH

The Semantic Program Graph of RefactorErl is capable of storing and effi-
ciently retrieving information from the represented Erlang source code. While
it is possible to directly use the SPG to retrieve the information necessary for
impact analysis, directly accessing the SPG is too costly. It is more efficient to
build a more compact and focused intermediate representation of the source
code first. Therefore, we use the SPG to calculate advanced representations
such as control, data and behaviour dependency graphs, and we calculate the
impact of a refactoring change on dependency graphs.

Changing the source code (by tool assisted semi-automatic refactoring, or
manually editing it) affects those program parts that depend on the changed
expressions. We grasp knowledge about such connections by building a De-
pendency Graph where

• a node represents an Erlang expression and
• an edge represents a possible dependency between two expressions.

A change spreads in the source code with different kinds of dependencies:
control, data, behaviour etc. We build several flow graphs to calculate these
dependencies: Data-flow Graph [9, 13], Control-flow Graph [14] and Behaviour
Dependency Graph [15].

3.2. Dependency Graph - DG. Working with flow graphs, in order to de-
termine real dependencies is not efficient, as it requires a number of traversals
in the CFG for every expression. Thus we use the well known approach used
at compilers, we build a dependency graph that eliminates the unnecessary
sequencing and includes only direct dependencies.

In building the DG we follow a compositional approach [12]. First we
determine the affected functions by performing a transitive closure on the
function call graph, starting from the selected functions. We build the CFG
for every function from this set separately. These CFGs are intrafunctional, as
these do not follow the function applications and message passing. Then from
the obtained CFGs we build postdominator trees (PDT) and control depen-
dency graphs (CDG). The next step is the composition stage of the obtained
CDGs. In this stage the function application and message passing edges are
resolved. With these steps we obtain the composed control dependency graph.

This graph contains only the control dependency edges, some other useful
information is necessary to determine real dependencies among the expres-
sions. We extend this composed CDG with data and behaviour dependency
edges, calculated from the former introduced graphs. This compound graph is
the DG of selected functions and contains necessary information about data,
control and behaviour dependencies of the expressions of the functions [14].



IMPACT ANALYSIS BASED REFACTORING VALIDATION 61

4. Change Impact Analysis

In this paper, we focus on impact analysis of refactorings. To find the
functions that are affected by a refactoring, we use dependency graph based
program slicing [16, 8].

The defined Dependency Graph represents the Erlang expressions as nodes
and the dependencies among expressions as edges. A change in an expression
in the source code that is changed by a refactoring may affect those expressions
that depend on the changed expression. In order to track these changes, we
have to traverse the Dependency Graph and gather those expressions that are
reachable from the changed expressions. Traversing the Dependency Graph
produces a static forward slice of the program. The program slice will contain
all expressions that are affected by the refactoring. A function is affected by
a refactoring if at least one expression from its body is contained in the slice.
We collect all functions that are affected by a refactoring.

Since QuickCheck properties are formalised as Erlang functions, the pro-
gram slice will contain the affected properties by a refactoring and we can
suggest to the user to retest them. In case there is no affected property for an
affected function we can check the behaviour equivalency within our refactor-
ing tool.

5. Transforming and deriving QuickCheck properties

As mentioned already, change impact analysis exactly identifies program
segments that may be affected by an arbitrary change (such as an effect of
a refactoring step) in the code. The result of such an analysis process may
include code of the application itself as well as parts of test modules. Due
to the nature of impact analysis, the former ones basically cover code pieces
whose meaning might have been modified by the previously mentioned change,
while the latter sort of code fragments include test routines that may have to
be changed accordingly and also they are due to be re-checked.

Those QuickCheck [10] properties that are available at the time of the
execution of a refactoring step are transformed similarly, according to the im-
pact of the specific refactoring step. More accurately, when a refactoring step
altering the public interface of a function referred within a test module gets
performed, calls within the test module are also transformed. For instance,
when the “reorder function arguments” transformation changes the order of
the arguments in a function definition, applications of that function are trans-
formed accordingly, even those that are located within test modules.



62 BOZÓ, TÓTH, TEJFEL, HORPÁCSI, KITLEI, KŐSZEGI, CSÖRNYEI, HORVÁTH

Refactoring steps should preserve the semantics and the behaviour of pro-
grams. A properly performed refactoring step consequently results in a pro-
gram that is semantically equivalent to the original one. In this paper, pro-
grams are said to be equivalent if they have the same observable behaviour,
that is, they return the same values on given input data and have the same
side-effects (such as I/O and exceptions). The validation of refactoring steps
obviously includes a phase that checks whether user-defined test cases satisfied
before the transformation remain satisfied. However, we can involve some ad-
ditional techniques for checking behaviour preservation, namely, the most vital
property to be checked may be that the original and the refactored program
are equivalent.

To establish the fact of equivalence, we should execute each function of
both the original and the transformed programs on every possible input value
and check whether they all produce the same values and side-effects respec-
tively. Obviously, this method is inapplicable in case of complex programs
involving many functions operating on a large domains. Fortunately, we can
omit the check of all the function that certainly are not affected by the per-
formed code change. As seen before, impact analysis identifies the functions
that might have been changed, so thus we only have to check those.

The problem of large input domains is resolved by using random genera-
tion. That is, change-affected functions are checked for semantics preservation
by a large number of randomly generated values. As Erlang is dynamically
typed, we can supply values of any type as arguments to functions, and at the
worst case we get runtime exceptions. Arguably, randomly generating lots of
improperly typed tests do not help with catching bugs. To avoid test cases
failing for reasons of data being ill-typed, types of functions are inferred and
then only well-typed input parameters are applied.

The property evaluates both the old and the new versions of affected func-
tions, compares the results and analyses I/O activity and thrown exceptions.
In the case they produce the same results, they likely are equivalent and there-
fore the refactoring step has been performed correctly, as it has preserved the
program behaviour. Such a property can be defined within QuickCheck and
can be checked just after a refactoring transformation has been made. User-
defined properties along with the described equivalence property can efficiently
validate refactoring steps.

Further validation steps. Beside checking whether the original and the
refactored program are semantically equivalent, we might verify refactoring-
specific properties as well, ensuring a more accurate validation of the refactor-
ing steps. Such properties can be based on software metrics, calculated and
compared on both the old and the new version of the source code.



IMPACT ANALYSIS BASED REFACTORING VALIDATION 63

6. Related work

There is a large body of work of software restructuring and refactoring.
Accordingly, there exists several state-of-the-art research for making program
refactoring safer. In most cases, these works focus on object-oriented programs
(for example [2, 6, 11]), but there exists a technique for testing Erlang specific
refactoring steps as well [3].

However, in the above researches, randomly generated test data is used
and no complex (if any) additional semantic or syntactic information about
the program is applied. The method illustrated in this paper uses knowledge
based on impact analysis, which makes the generation of more specific and
more relevant test cases possible, which may result in a more efficient testing
method.

In the case of object-oriented programs there exists also incremental soft-
ware change supporting tool using impact analysis [1]. Integrating the interac-
tive behaviour of the refered tool and the test case selection method presented
in this paper could be a possible direction for future work.

7. Conclusions and future plans

The paper demonstrates how knowledge originating from impact analysis
can be used for validation of refactoring steps. The applicability of introduced
method is illustrated by a case study based on capabilities of RefactorErl, a
refactoring tool for functional programming language Erlang. The paper also
outlines a method for assembling the required knowledge in the specific case
of Erlang.

Since Erlang is a dynamically typed language, to ensure the safety of
statically performed transformations is hard and the derived static semantic
knowledge is not enough. Therefore we examined various connections among
refactorings and test cases. Therefore we recommend to rerun a subset of
selected test cases after the refactorings and we introduce new properties to
check the behaviour of the changed system. We use impact analysis to se-
lect the code parts that are affected by a transformation and based on this
knowledge we can minimise the cost of regression test.

In the future, the described method can be extended to make available
refactoring steps driven improvement of existing test databases with semi-
automatic extension of existing test cases relevant for program slices changed
via given refactoring steps.

Acknowledgement

This work was supported by TECH 08 A2-SZOMIN08, ELTE IKKK and
Ericsson Hungary.



64 BOZÓ, TÓTH, TEJFEL, HORPÁCSI, KITLEI, KŐSZEGI, CSÖRNYEI, HORVÁTH

References

[1] Buckner, J., Buchta, J., Petrenko, M., Rajlich, V. JRipples: A Tool for Incremen-
tal Software Change IEEE International Workshop on Program Comprehension, 2005,
149 - 152.

[2] Daniel, B., et al., Automated testing of refactoring engines. In ESEC/FSE, pages 185194,
New York, NY, USA, 2007. ACM Press. ISBN 978-1-59593-811-4.

[3] Drienyovszky, D., Horpácsi, D., Thompson, S., QuickChecking Refactoring Tools, Erlang
10: Proceedings of the 2010 ACM SIGPLAN Erlang Workshop, ed.: Scott Lystig Fritchie
and Konstantinos Sagonas, pages 75-80 ACM SIGPLAN, September 2010,

[4] Erlang Homepage, https://www.erlang.org
[5] Fowler, M. and Beck, K. and Brant, J. and Opdyke, W. and Roberts, D., Refactoring:

Improving the Design of Existing Code, Addison-Wesley, 1999
[6] Gligoric, M., et al., Test generation through programming in UDITA, Proceedings of the

32nd ACM/IEEE International Conference on Software Engineering - Volume 1, pages
225-234, New York, NY, USA, 2010, ACM Press

[7] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Vı́g A., Nagy, T., Tóth, M., Király, R.:
Modeling semantic knowledge in Erlang for refactoring, Knowledge Engineering: Prin-
ciples and Techniques, Proceedings of the International Conference on Knowledge En-
gineering, Principles and Techniques, volume 54(2009) Sp. Issue, Studia Universitatis
Babe-Bolyai, Series Informatica, Cluj-Napoca, Romania, July, 2009

[8] Horwitz, S. and Reps, T. and Binkley, D., Interprocedural slicing using dependence
graphs., PhD thesis, University of Michigan, Ann Arbor, MI, 1979

[9] Lövei, L.:, Automated module interface upgrade, Erlang ’09: Proceedings of the 8th
ACM SIGPLAN workshop on Erlang, ISBN 978-1-60558-507-9, pages 11–22, Edinburgh,
Scotland, September, 2009

[10] Quviq QuickCheck, http://www.quviq.com/, 2011
[11] Soares, G. Making Program Refactoring Safer. In ICSE ’10: Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering, pages 521-522, New York,
NY, USA, 2010.

[12] Stafford, J.A., A Formal, Language-Independent, and Compositional Approach to Con-
trol Dependence Analysis., PhD thesis, University of Colorado, Boulder, Colorado, USA,
2000

[13] Tóth, M., Bozó, I., Horváth, Z., Tejfel, M.:, 1st order flow analysis for Erlang, In
Proceedings of 8th Joint Conference on Mathematics and Computer Science, 2010

[14] Tóth, M., Bozó, I.:, Building dependency graph for slicing Erlang programs, Paper
submitted to Periodica Politechnica, 2010

[15] Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M. Kozsik, T., Impact analysis
of Erlang programs using behaviour dependency graphs., Central European Functional
Programming School. Third Summer School. Revised Selected Lectures., 2010

[16] Weiser, M.: Program slices: Formal, psychological, and practical investigations of an
automatic program abstraction method., ACM Transactions on Programming Languages
and Systems, 12(1):3546, 1990

Department of Programming Languages and Compilers, Faculty of Infor-
matics, Eötvös Loránd University

E-mail address: {bozo i,toth m,matej,daniel h,kitlei,kojqaai,hz}@inf.elte.hu


