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GEODESIC DISTANCE-BASED KERNEL CONSTRUCTION

FOR GAUSSIAN PROCESS VALUE FUNCTION

APPROXIMATION

HUNOR JAKAB

Abstract. Finding accurate approximations to state and action value
functions is essential in Reinforcement learning tasks on continuous Markov
Decision Processes. Using Gaussian processes as function approximators
we can simultaneously represent model confidence and generalize to unvis-
ited states. To improve the accuracy of the value function approximation
in this article I present a new method of constructing geodesic distance
based kernel functions from the Markov Decision process induced graph
structure. Using sparse on-line Gaussian process regression the nodes and
edges of the graph structure are allocated during on-line learning paral-
lel with the inclusion of new measurements to the basis vector set. This
results in a more compact and efficient graph structure and more accu-
rate value function estimates. The approximation accuracy is tested on a
simulated robotic control task.

1. Introduction

The majority of real-life control problems including robotic locomotion
requires the efficient handling of continuous and high dimensional state and
action spaces, therefore function approximation needs to be employed. In real-
life control tasks the ability to handle uncertainties arising from noisy measure-
ments is a deciding factor in terms of performance and efficiency. Gaussian
processes (GP) can be used efficiently for the approximation of value func-
tions on continuous state spaces. The nonparametric nature of GP’s provides
increased flexibility and the resulting fully probabilistic model can be used
for appropriate uncertainty treatment. One of the major drawbacks of us-
ing GP action-value function approximation with Euclidean distance-based
kernel functions is the fact that they cannot accurately represent discontinu-
ities. There are many reinforcement learning (RL) tasks where the state or
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state-action value function corresponding to the actual policy is discontinu-
ous in some regions of the space. This discontinuity has great influence on
the algorithms performance. In this paper I describe a modality to increase
the accuracy of our GP action-value function estimates by introducing a new
modality of constructing kernel functions that operate on a graph structure
induced by the Markov decision process (MDP) underlying the RL problem.
Unlike in [7] the nodes of the MDP induced graph structure are allocated dy-
namically parallel to the inclusion of new basis vectors in the GP estimator.
The resulting graph gives a compact representation of the most important
points of the state space. Replacing Euclidean distance in the kernel func-
tion with distances defined on the paths between data-points from the MDP
induced graph leads to more accurate value function approximations.

2. Notation and background

A formal representation of a reinforcement learning problem is given using
Markov decision processes [4]. An MDP is a quadruple M (S,A, P,R) with
the following elements: S is the set of states; A the set of actions; P (s′|s, a) :
S × S × A → [0, 1] the transition probabilities, and R : S × A → R, R(s, a)
the reward function. Calculating value functions for a policy π is essential for
all value-based reinforcement learning algorithms. Value functions measure
the long-term usefulness of a given state or state-action pair based on the
cumulative reward received when starting out in that state and following a
given policy1 [8]: V π(s) = Eπ

(∑∞
t=0 γ

trt|st = s
)

Different approaches of using Gaussian processes for estimating value func-
tions have been proposed[2, 5, 3] . In our approach we use as training data the
states visited during different episodes of the experiment, and the correspond-
ing – possibly – discounted cumulative rewards V (st) =

∑H−t
i=0 γirt+i as noisy

targets.2 The model is a GP, completely specified by its mean and covariance
function, and it can be used to perform regression directly in a function space,
with the resulting V̂ (s) being the approximation to the state value function.
The elements of the kernel matrix KKK are KKK(i, j) = k(si, sj), where k is the
kernel function operating on state variables. Having processed n points we
have a GP built on the data set D = [(si, V i)]i=1,n which is also called the set
of basis vectors (BV). To estimate the value of a new state, sn+1, we compute
the predictive mean (1) and variance (2) functions conditioned on the data,

1For ease of visualization throughout the article I use state-value functions, but the pre-
sented methods naturally apply also to state-action value functions.

2We assume that the targets have Gaussian noise with equal variance; one can easily use
different known noise variance.
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given by the posterior GP [6]:

V̂n+1|D ∼ N (µn+1, cov(sn+1))

µn+1 = kkkn+1αααn(1)

cov(V̂n+1, qn+1) = k (sn+1, sn+1)− kkkn+1CCCnkkk
T
n+1,(2)

where αααn and CCCn are the parameters of the posterior GP:

αααn = [KKKn
q +ΣΣΣn]

−1V , CCCn = [KKKn
q +ΣΣΣn]

−1.(3)

with ΣΣΣn = σσσIn the covariance of the observation noise and kkkn+1 a vector
containing the covariances between the new point and the training points:

(4) kkkn+1 = [k(s1, sn+1), . . . , k(sn, sn+1)].

The above described method leads to good value function estimates when
there are no significant discontinuities in the true value function. Figure 1
shows a comparison between TD and GP approximated value functions for
the inverted pendulum (sec.4) balancing task in case of a fixed policy.
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Figure 1. Color map of estimated value functions in case of
(a) TD approximation , (b) GP approximation

3. Geodesic distance based on-line kernel construction

To improve the ability of our value function approximator to represent
discontinuities a new distance measure for the kernel function k is needed. Let
G denote a sparse graph structure induced by the MDP which we will define
as follows: G is a graph that has n nodes where n = |BV | is the number of
basis vectors present in the GP value function approximator. The connection
between these nodes are initialized parallel to the addition of each basis vector
to the BV set of the GP. For this procedure sparse on-line GP value function
approximation is being used. In this setting only those data-points are added
to the BV set which provide significant information gain during the learning
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process, thereby reducing the number of the GP parameters drastically. For
details of sparse on-line updates consult [1].

Using the GP basis vectors as nodes in our graph construction makes
sure that the graph structure remains sparse and the nodes are placed in
important regions of the state space. The construction of the MDP induced
graph structure during the learning process proceeds as follows: If at time-step
t we perform a full update of the GP parameters, adding the data-point st to
the set of basis vectors, we establish a new node in our graph structure and
connect it to the existing graph according to the following rule:
(5)

dst,si =

ED(si, st) ifsi = argmin
sj

(
exp

[
−∥st−j−st∥

2σGP (st)

])
,

0 otherwise
j = 1 . . . t− 1

Here dst,si denotes the connection weight between nodes t and i. I used the
notation ED(·, ·) to denote the Euclidean distance between two points from
the state-action space, and σGP (st) to denote the predictive variance of the
GP value function approximator at point st.
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Figure 2. (a) Graph structure, (b) GP approx. with geodesic kernel

The small number of graph nodes makes it possible even in case of contin-
uous state-action spaces to represent optimal distances between each node in
a lookup table which leads to lesser computational costs. Figure 2.a presents
the graph structure obtained after training the GP for a number of episodes
on the inverted pendulum problem (sec.4), with a Gaussian policy and a fixed
neural-network based controller. Shortest paths between nodes of the graph
can be calculated efficiently using Dijkstra’s algorithm. Based on this graph
structure a new type of kernel function can be built which uses as a distance
measure the shortest path between two data-points.

(6) k(s, s′) = exp

(
SP (s, s′)2

2σ2

)
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The definition of the shortest path exists only between data-points that are
present in the GP basis vector set. In a continuous state-action space visiting
the same state-action pair twice has very low probability, therefore we have to
define our shortest path measure between two points as the distance between
the two basis-vectors that are the closest to the data-points plus the distance
of the data-points from these Basis vectors.

SP (s, s′) = ED(s, si) + SP (si, sj) + ED(sj , s
′)

si = argmax
si

(ED(s, si)) i = 1 . . . n

sj = argmax
sj

(ED(s′, sj)) j = 1 . . . n

The expression for the predictive mean in eq.(1) can be regarded as a
weighted linear combination of the value measurements in each basis vector.
The weights given by kkkn+1 from eq.(4) using the newly defined covariance
function from eq.(6) represent how far each basis vector is located on a se-
quence of states from the test-point.3 This can also be regarded as a modified
eligibility trace.
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Figure 3. (a) Mean squared error, (b) Normalized Variance

4. experiments and results

The above presented method was tested on a simulated control problem,
the classical pendulum balancing task where both the state and the action
spaces are continuous. A state variable s = (θ, ω) consists of the angle and
angular velocity of the pendulum, actions are the torques that we can apply to

3Note that from the definition of the connections between the graph nodes follows that
the sequence of states upon which the distance is measured is always executable under the
current policy π.
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the system, and are limited to a [−5, 5] interval. The performance of the pro-
posed value-function approximation scheme is tested under a fixed Gaussian
policy which consists of a deterministic controller and added Gaussian noise
with fixed variance π(s, a) = N (0, σ2) + fθ(s). As a baseline I used the TD
approximation of the corresponding value function, based on 800 episodes of
length 150. The state space was discretized to contain 3600 states. Figure 3
shows the approximation accuracy of both standard GP and Geodesic distance
based GP value function approximation where the horizontal axis represents
the maximum number of allowed basis vectors and the vertical axis measures
the mean squared approximation error. In terms of approximation error GP
with geodesic Gaussian kernel performs significantly better by low number of
basis vectors, and achieves the same performance as standard GP after the
number of BV’s exceeds a threshold. However the variance of the value func-
tion estimates decreases slower when geodesic kernel is being used. There is
also a performance decrease in a certain region of max BV numbers where the
performance gets worse than standard GP.

5. conclusion

In this article I have presented a modality of dynamically constructing
geodesic distance based kernel functions during on-line Gaussian Process value
function approximation. Unlike in previous work where fixed resolution graph
structures have been used I presented a way to construct the MDP induced
graph only between data-points which are important from the information-
gain point of view. Experimental results prove the viability of this method.
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