
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

WHY MUST WE TEACH VERIFICATION AND

VALIDATION TO UNDERGRADUATES?

MILITON FRENŢIU AND FLORIN CRǍCIUN

Abstract. The way program verification is taught is firstly described.
The verification methods are shortly presented and the objectives of the
Verification and Validation (V&V) course are discussed. The main gain
on the students education is finally underlined.

1. Introduction

The most important property of a program is whether it accomplishes the
intentions of its user, i.e. if it is correct. We have all observed the permanent
and rapid growth of computer usage in all fields of human activity. The need
for new programs is immense and their complexity is continuously growing.
There are known programs with millions of lines written by hundreds of people.
These more complex programs cannot be developed like the old small ones.
It has become necessary to analyse software costs over the entire life cycle of
the system. It is known today that the major errors are due to poor design
of the system not to bad coding. After all, the fraction of time needed for
programming is about 20% of the entire development process.

The need for more reliable software [20, 25, 14], and the role of Verification
and Validation [3, 15, 35] are well known. Investigations have shown that
formal verification procedures would have revealed the exposed defect in, e.
g., the Ariane-5 missile, Mars Pathfinder, Intels Pentium II processor, or the
Therac-25 therapy radiation machine [5].

Today software systems have become essential parts of our daily life. Com-
puters are used in all fields of human activities. More and more programs are
needed, and their complexity increases continuously. Software critical systems
[1] require error-free programming. To obtain programs without errors we

Received by the editors: April 8, 2011.
2010 Mathematics Subject Classification. 68Q60, 68N30.
1998 CR Categories and Descriptors. D.2.4 [Software]: Software engineering – Soft-

ware/Program Verification; D.2.5 [Software]: Software engineering – Testing and Debug-
ging .

Key words and phrases. verification and validation, education.

39



40 MILITON FRENŢIU AND FLORIN CRǍCIUN

need a new way of writing programs, new people, much better educated, able
to do this.

There is a contradiction between the desire to obtain a system as quickly
as possible, and to have a correct system. The experience shows that more
than 75% of finished software products have errors during maintenance, and
deadlines are missed and the cost overrunning is a rule, not an exception. It
was estimated [34] that more than 50% of the development effort is spent on
testing and debugging. Nevertheless, some errors are not detected by testing,
and some of them are never detected. More, there are projects that have never
been finished [8]. And it is not an exception; it is estimated that from each
six large projects two of them are never finished.

Almost all students have learned some programming at school. They think
they know what programming is all about. They express resentment when they
are forced to document their activity, to design the program, or to think to
the correctness of their programs. They go directly to computer and introduce
their programs, and then run them. If the first execution seems OK they are
satisfied. They don’t like to think first to the algorithm and to describe it
on the paper. Also, they are not used to test seriously their programs. We
need to fight with these people, to change their habit, to educate them in a
different way. That is why we have to stress from the very beginning that
”programming is a high intellectual activity” [19], that ”they must think first,
program later” [23], that the correctness is the most important property of
good programs.

2. The contents of Verification and Validation Course (V&V)

The validation and verification of software systems is a major issue in
Software Engineering. The objective of this course is to train future computer
scientists and engineers in the fundamental concepts on which verification and
validation of software systems are based. Though the orientation of the course
is practical in nature, its goal is to teach the fundamental principles that are
needed to build reliable systems needed in various fields.

V&V is one of the important courses that contribute to obtain well-
educated practitioners. We teach such a course to the third year undergradu-
ates [15]. The theoretical basis for building reliable software products is given
here. The course consists of three main parts:

• the theory of program correctness;
• the methods of verification and validation;
• the consequences on software engineering practice.

The entire curricula of this course, and also, the undergraduate study program
may be seen at [31].



WHY MUST WE TEACH VERIFICATION AND VALIDATION TO UNDERGRADUATES?41

One cannot understand V&V if she/he does not know the concept of pro-
gram correctness. We are confident that we cannot prove the correctness of
a large program with one million lines. But, as Dijkstra [4] underlined, it
is necessary to use perfect (correct) simple algorithms for building reliable
large programs (but it is not sufficient). The first part of the course presents
this concept and gives methods to prove correctness. The Floyd and Hoare
methods [10, 18] to prove correctness are given. Then, more important, the
accent is put on the methods to achieve this correctness by refinement from
specifications. Also, the roles of Dijkstra [6], Hoare [18], Gries [17], Droomey
[7], and Morgan [27] are mentioned.

The verification methods discussed in the second part are: proving correct-
ness (already mentioned), testing, inspection, symbolic execution, and model
checking. Testing is the oldest verification method and often the only one
used. Symbolic execution [22] although similar to testing, differs from testing
by the values given to the input variables, which are symbols not concrete
values.

Inspection, introduced by Fagan [9], with all later variants (peer reviews
[33], walkthroughs [30], active design reviews [29]) is a newer V&V method, as
well as Model Checking [2, 21]. Inspections can find up to 80% of defects, much
earlier than testing. The formal process developed by Fagan was improved by
Gilb [16], who considers that the main advantage of inspection over testing is
its possibility of process improvement. The feedback obtained from inspections
is useful to eliminate defects and bad habits from the development processes.
Also, the cost of eliminating an error by testing is 14.5 times higher than the
cost of eliminating it by inspection [32].

At the undergraduate level we cannot afford to teach the mathematical
basis of model checking, the theory that lies at the basis of model checking.
Instead, the main theoretical aspects are presented in a two hours lecture, and
the existence of tools and examples of such tools are shortly presented [15].

It is underlined that all of these methods must be practiced during the
software process [15]. Their usage may be informal, or more formal, complete
or only some of them, depending on the type of the system which is built. For
safety-critical systems all of the above mentioned methods must be used. We
consider that all future software engineers should be aware of all verification
methods.

The third part of the course presents the Cleanroom methodology [26, 24],
the role of V&V for Software Quality Assurance and Software Process Im-
provement, and the consequences of correctness theory on software engineering
practice [11, 14, 15].



42 MILITON FRENŢIU AND FLORIN CRǍCIUN

3. Consequences of teaching Verification on Software Engineer

We think that we educate our students for their future profession, that
last for several decades. Also, they must be prepared for changes in software
engineering. They need to acquire now the knowledge needed to build more
reliable systems. Certainly, proving correctness of algorithms is not enough
to obtain more reliable systems, but it is necessary. For years we ask the
students to understand and to respect some important rules of programming
[11, 13, 14, 23]. Many of them are simple consequences of the theory of program
correctness [11].

The fact that program verification is a very important activity which ex-
tends from the first statement of the problem, until the end of the project is
repeated many times. And a special attention was given to the inspection of
all documents [9, 28]. The students must hear from the beginning that testing
is not enough, that inspection of all phases may be more useful.

The future software tester must be well prepared to test software prod-
ucts, the member of the verification team must be an expert in verification
activities. Not all students will work in a verification team, but all of them
must contribute to build reliable systems.

So, why must we teach Verification and Validation? The knowledge ac-
quired teaching a V&V course have serious consequences on the entire activity
of a software engineer. These consequences may be extracted as important
rules that must be obeyed by all participants in the software process. We
mentioned here only few of them:

• Prevention is better than cure!
• Think first, program later!
• Do it right the first time!
• Prove the correctness of your algorithms!
• Write documentation for all software activities!
• Inspection is superior to testing!
• Discover and Remove the errors as early as possible!
• Use comments to document your code. Use assertions.
• Pay attention to the clarity of your software documents!
• Respect the standards!

4. Conclusions

We need confidence in the quality of our software products. We need to
educate the future software developers in the spirit of producing correct, re-
liable systems. For this we must teach students to develop correct programs.
We are aware that usually programmers do not prove the correctness of their
programs. There always has to be a balance between cost and the importance



WHY MUST WE TEACH VERIFICATION AND VALIDATION TO UNDERGRADUATES?43

of reliability of the programs. But just when the well educated people do not
prove the correctness, their products are more reliable than the products of
those ”programmers” who never studied program correctness. Therefore, we
consider that the students must hear, and must pay attention to the correct-
ness of their products.

From first year, students are taught about program specification and de-
sign. The entire life-cycle is presented, the importance of documentation for
all steps is underlined. Top-down and the other programming methods are
taught, and the students hear that the design is more important than coding.
Each part of the design must be specified, the code must be explained by
comments, the comments should be neither more nor less than needed. Since
we also observed that students do not like to write comments [12] we tried to
explain their necessity, and to force them to document the code [13].

References

1. R. W. Butler and S. C. Johnson, Formal Methods For Life-Critical Software, Computing
in Aerospace 9 Conference (San Diego, California), 1993, pp. 319–329.

2. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 1999.
3. E. M. Clarke and J. M. Wing, Formal Methods: State of the Art and Future Directions,

ACM Computing Surveys 28 (1996), no. 4, 626–643.
4. O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, American

Press, 1972.
5. N. Dershowitz, Software Horror Stories, www.cs.tau.ac.il/∼nachumd/horror.html.
6. E. W. Dijkstra, Guarded Commands, Nondeterminacy and Formal Derivation of Pro-

grams, Communications of the ACM 18 (1975), no. 8, 453–457.
7. G. Dromey, Program Derivation. The Development of Programs from Specifications, Ad-

dison Wesley, 1995.
8. Oz Effy, When Professional Standards are LAX. The CONFIRM Failure and Its Lessons,

Communications of the ACM 37 (1994), no. 10, 29–36.
9. M. Fagan, Design and Code Inspections to Reduce Errors in Program Development, IBM

Systems Journal 15 (1976), no. 3, 182–211.
10. R. W. Floyd, Assigning Meanings to Programs, Mathematical aspects to computer sci-

ence. Proc.Symposium in Applied Mathematics (J. T. Schwartz, ed.), no. 19, American
Math. Soc., 1967, pp. 19–32.

11. M. Frentiu, On Program Correctness and Teaching Programming, Computer Science
Journal of Moldova 5 (1997), no. 3, 250–260.

12. , The Impact of Style on Program Comprehensibility, Proceedings of the Sympo-
sium Zilele Academice Clujene (2002), 7–12.

13. , On programming style, www.cs.ubbcluj.ro/∼mfrentiu/articole/ style.html, 2003.
14. , Correctness, A Very Important Quality Factor in Programming, Studia Univ.

Babeş-Bolyai, Seria Informatica L (2005), no. 1, 12–21.
15. , Verificarea si Validarea Sistemelor Soft, Ed. Presa Universitara Clujeana, Cluj-

Napoca, 2010.
16. T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.
17. D. Gries, The Science of Programming, Springer Verlag, 1981.



44 MILITON FRENŢIU AND FLORIN CRǍCIUN

18. C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Communications of
the ACM 12 (1969), no. 10, 576–580.

19. , The mathematics of programming, Foundations of Software Technology and
Theoretical Computer Science, Fifth Conference, 1985, pp. 1–18.

20. C. M. Holloway, Why Engineers Should Consider Formal Methods, 16th AIAA/IEEE
Digital Avionics Systems Conference, vol. 1, 1997, pp. 1.3–16–1.3–22.

21. J. P. Katoen, Principles of Model Checking, MIT Press, 2008.
22. J. C. King, Symbolic Execution and Program Testing, Communications of the ACM 19

(1976), no. 7, 385–394.
23. H. F. Ledgard, Programming Proverbs for Fortran Programmers, Hayden Book Company

Inc., New Jersey, 1975.
24. R. C. Linger, Cleanroom Software Engineering for Zero-Defect Software, 5th Intern.

Software Engineering Conference (Baltimore), IEEE Comp. Soc. Press, 1993, pp. 1–13.
25. B. Meyer, Software Engineering in the Academy, IEEE Computer 34 (2001), 28–35.
26. H. Mills, M. Dyer, and R. Linger, Cleanroom Software Engineering, IEEE Software 4

(1987), no. 5, 19–25.
27. C. Morgan, Programming from Specifications, Springer, 1990.
28. A. Myers, A Controlled Experiment in Program Testing and Code Walkthroughs Inspec-

tion, Communications of the ACM 21 (1978), no. 9, 760–768.
29. D. L. Parnas and D. M. Weiss, Active Design Reviews: Principles and Practices, 8th

Intern. Conf. on Software Engineering, 1985, pp. 215–222.
30. S. R. Schach, Software Engineering, IRWIN, Boston, 1990.
31. UBB, Undergraduate Study Program, Babeş-Bolyai University,

http://www.cs.ubbcluj.ro, 2011.
32. K. E. Wiegers, Improving Quality Through Software Inspections, Software Development

3 (1995), no. 4, 55–64.
33. , Seven Truths About Peer Reviews, Cutler IT Journal (2002).
34. E. Yourdon, Modern Software Analysis, Yourdon Press, Prentice Hall Building, New

Jersey, 1989.
35. M. V. Zelkowitz, Role of Verification in the Software Specification Process, Advances in

Computers, no. 36, Academic Press, 1993, pp. 43–109.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babes-Bolyai University, Cluj-Napoca, Romania

E-mail address: mfrentiu@cs.ubbcluj.ro, craciunf@gmail.com


