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BAYES-NASH EQUILIBRIUM IN THE PRESENCE OF

INFORMATION SOURCES: COMPUTATIONAL ISSUES

BAZIL PÂRV(1) AND ILIE PARPUCEA(2)

Abstract. This paper discusses computational issues of finding Bayes-
Nash equilibrium (BNE) in the presence of information sources, which
separate game-specific information from environment-based information.
A general algorithm is given.

1. Introduction

Bayesian decision theory is concerned with the question of how a decision
maker should choose a particular action from a set of possible choices if the
outcome of the choice also depends on some unknown state (from the states of
the world). In our approach, the decision maker is modeling the information
received by the system (i.e. new information) as an information source [3].
A decision problem involves one or several information sources. We assume
that each person is able to represent his beliefs, as the likelihood of the dif-
ferent n states of the information source, by a subjective discrete probability
distribution [6].

The structure of this paper is as follows. After this introductory part, the
next section contains background information and notations used throughout
the paper. The third section contains a short description of the classical and
proposed solution, as well as the steps of an original algorithm based on the
externalization of information sources which computes Bayes-Nash equilibrium
for a class of games with incomplete information. Finally, the last section
draws some conclusions and outlines future research.
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2. Background material

Consider a game with incomplete information (as in [2]), denoted by:
Γt = (I, (Fi)i∈I , (Π

i
t(f, θ))i∈I , (Θi)i∈I , µt),

where:

• I is the set of players, |I| = m,
• Fi is the strategy set for player i, i = 1,m, and F = F1×F2×· · ·×Fm

is the the set of all possible strategy profiles;
• f = (f1, f2, · · · , fm) ∈ F is a joint strategy or strategy profile;
• Θi is the set of types for the player i, and Θ = Θ1 ×Θ2 × · · · ×Θm is

the joint type space;
• θ = (θ1, θ2, · · · , θm) ∈ Θ is the joint type of all players;
• Πi

t(f, θ) is the payoff function for player i at the moment t if the strat-
egy f and the type combination θ are chosen. Note that the payoff for
the player i may depend not only on its type θi, but also on the other
players’ type, denoted by θ−i.
• µt - the probability distribution on the set Θ at the moment t. This is

the uncertainty-dominated component of the game, which draws our
attention in this paper.

In our exposition, we assume that type sets Θi are finite; consequently,
Θ is a finite set also. µt(θ), θ ∈ Θ denotes the probability of chosing type
combination θ at the moment t. As in [5], we assume, without loss of generality,
that players have incomplete information about their opponents’ payoffs but
have complete information about the strategies of all other players.

A strategy profile f∗(θ) = (f∗1 (θ1), f∗2 (θ2), · · · , f∗m(θm)) constitutes a Bayes-
Nash equilibrium (see [2] and [4]) of a game Γt with incomplete information if
the following inequality:

∑
θ−i∈Θ−i

Πi
t(f
∗
i (θi), f

∗
−i(θ−i), θi, θ−i)µt(θ−i|θi) ≥∑

θ−i∈Θ−i

Πi
t(fi(θi), f

∗
−i(θ−i), θi, θ−i) · µt(θ−i|θi)

holds for all possible players i ∈ I and all types θi ∈ Θi and all strategies
fi ∈ Fi.

The information source St+1 is a possible probability distribution of states
at the moment t + 1. Γt+1, the game with incomplete information at the
moment t+ 1, based on St+1, can be defined recursively as follows:

Γt+1 = Γt(St+1), where Γt+1 = (I, (Fi)i∈I , (Π
i
t(f, θ))i∈I , (Θi)i∈I , µct).

The probability distribution µt conditioned by the information source St+1,
denoted by µct, is the probability distribution µt updated by the information
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source St+1. The game Γt+1 is the updated game Γt based upon St+1. This
information source updates probability distribution µt on Θ and thus the equi-
librium of Γt is modified.

The above notations allow us to define the Bayes - Nash equilibrium of
the game Γt+1 as a list of decision functions (f∗1 (.), · · · , f∗m(.))t+1, such that
for all possible players i ∈ I and all types θi ∈ Θi, the inequality:∑

θ−i∈Θ−i

Πi
t

(
f∗i (θi), f

∗
−i(θ−i), θi, θ−i

)
· µct(θ−i|θi) ≥∑

θ−i∈Θ−i

Πi
t

(
fi, f

∗
−i(θ−i), θi, θ−i

)
· µcit(θ−i|θi)

holds for all strategies fi ∈ Ft.
The equilibrium of Γt+1 can differ from the equilibrium of Γt due to the

information in St+1. For a given player i ∈ I the updated equilibrium of Γt+1

is:
f∗i (.) =

∑
j
f∗ij(.) · pj(t),

where f∗ij(.) is the equilibrium of player i for the state sj of the information

source St+1 and pj(t) is the probability that St+1 = sj .

3. Computing the equilibrium

3.1. Classical approach. According to [7], the computing of equilibrium for
a game with incomplete information involves the following steps:

(1) Specify a computational mechanism;
(2) Generate candidate strategies;
(3) Estimate the empirical game;
(4) Solve the empirical game;
(5) Analyze the results.

One of the drawbacks of this approach is that it does not emphasize the
dynamics of uncertainty, i.e. the transformation µt → µt+1 is hidden. Once
the equilibrium is computed at moment t, it is hard to decide when to compute
it again (i.e. to decide when the moment t+ 1 is arrived).

The transition t → t + 1 is purely formal: the re-computing of equilibria
is performed each time it is needed; this is not discussed explicitely in the
literature. Our proposal, i.e. the externalization of information sources offers
a more precise trigger to re-compute equilibria.

3.2. Externalization of information. The proposed approach models the
information environment with the help of n information sources. Input data
considered are the same as in classical approach: historical data, player data,
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including payoff functions and strategies, probability distribution µt = µ(t)
and the computed equilibrium at the moment t. Our approach considers the
process of updating probability distribution at the t + 1 moment, µt+1 =
µ(t+ 1), as a separate step; this update process uses estimates of information
sources for the t+ 1 moment.

The most important thing here, described using a simple example in [8],
is the way in which the uncertain component of the game, µt is updated (or
estimated). The intrinsic uncertainty of this component is due to the fact that
information which influences its probability distribution is not entirely known.
The solution of the game at the moment t + 1 is given by the computing of
the component µt+1, which is (seems to be) an update of the distribution µt
based on the predictions regarding information sources for the moment t+ 1.

This way, the game at the moment t+ 1 is the game at the moment t with
the uncertain component µ updated: Γt+1 = Γt(µt → µt+1).

The transition t→ t+ 1 is purely formal and has the following semantics:
when the state of an information source (i.e. the probability distribution of
the random variable associated to it) is changed, the equilibrium needs to be
re-computed.

Algorithm 1: Computing Bayes-Nash equilibrium in the presence of
information sources
Data: m ∈ N number of players; n ∈ N number of information sources;

F1, F2, · · · , Fm strategies of the players; Θ1,Θ2, · · · ,Θm types of
the players; (µc1

0, µc
2
0, · · · , µcn0 ) probability distributions of

states of information sources; (p1, p2, · · · , pm)t=0 average prices;
Πi, i = 1,m payoff functions; T prognosis (planning) horizon

Result: Sol = {(p∗1, p∗2, · · · , p∗m)t, t = 1, T}.
begin

t←− 0

while t < T do

{ Step 1: estimate µcjt+1, j = 1, n and (p1, p2, · · · , pm)t+1}
{ Step 2: build the complex information source SCt+1}
{ Step 3: update the probability distributions µcjt+1, j = 1, n}
{ Step 4: rebuild the payoff functions Πi, i = 1,m}
{ Step 5: compute the equilibrium prices (p∗1, p

∗
2, · · · , p∗m)t+1}

t←− t+ 1

Remarks
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(1) Each player produces a single product, slightly different from the prod-
ucts provided by the other players. The strategies of the players are
represented by the equilibrium prices (p∗1, p

∗
2, · · · , p∗m)t for their prod-

ucts at each moment t in the planning horizon, t = 1, T .

(2) In Step 3, probability distributions µcjt+1 are conditioned by the state
of the complex information source SCt+1.

(3) In Step 4, if payoff functions are given in analytical form, they need to
be rebuilt, as shown in [8].

(4) The estimation of the equilibrium in Step 5 depends on the form of
payoff functions. If they are continuously differentiable with respect
to the prices and an analytical solution can be found, as shown in [8],
then the solution is straightforward. If payoff functions are given in
table form, or an analytical solution is not known, the general approach
is to reduce the game Γt+1 to a game with complete information (as
discussed in [1]) and to compute its Nash equilibrium using known
algorithms. This single step is subject to recent research for particular
games.

(5) Another key issue in implementing this algorithm is the representation
of the components of the game. Simple examples involving two players
and several information sources are easy to manage, but the space
required is growing at least polynomial in the number of players and
information sources considered.

4. Conclusions and further work

The essential difference between the classical approach and the one pro-
posed in this paper is given by the separation of the information external
to the game from the game-specific information. This separation follows the
separation of responsibilities principle. This way, both external and internal
elements of the game are easier to model and understand.

The classical approach does not make any distinction between these two
categories of information; more precisely, the influence of external informa-
tion on the uncertainty that dominates the game is not taken into account or
quantified. By splitting the game information into external and internal, the
former being modeled by information sources, the influence of external envi-
ronment on the variation of the solution is better captured and quantified.
This provides a better evaluation of the contribution of individual factors to
the predicted equilibrium.

Another advantage of this separation is that it allows a better, easier
calibration of the model, by comparing the computed equilibrium with real
solution, taken from historical data.
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Further work will include the detailed study of concrete problems involving
games with incomplete information, and comparing the results obtained using
classical and proposed approaches. The general algorithm presented here will
be implemented in several game-specific applications.
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