
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

STORAGE INDEPENDENCE IN DATA STRUCTURES

IMPLEMENTATION

VIRGINIA NICULESCU

Abstract. Design patterns may introduce new perspectives on the tra-
ditional subject of data structures. They introduce more flexibility and
reusability in data structures implementation and use. We analyze in this
paper some design patterns that can be used for data structures implemen-
tation, and their advantages. This analysis emphasizes how design patterns
could be used in order to obtain implementation of the data structures
based on storage independence.

1. Introduction

Data structures [4, 8] represent an old issue in the Computer Science field.
By introducing the concept of abstract data type, data structures could be de-
fined in a more accurate and formal way. A step forward has been done on this
subject with object oriented programming [1]. Object oriented programming
allows us to think in a more abstract way about data structures. Based on
OOP we may define not only generic data structures by using polymorphism
or templates, but also to separate definitions from implementations of data
structures by using interfaces.

Design patterns may move the things forward, and introduce more flexi-
bility and reusability for data structures.

2. First Level and Second Level Data Structures

The study of the different data structures emphasizes the fact that we can
make the following classification:

• first level or fundamental data structures;
• second level data structures which are characterized by the fact that

their implementations use first level data structures.

Received by the editors: March 30, 2011.
2000 Mathematics Subject Classification. 68P05.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; E.2 [Data]: Data

Storage Representation.
Key words and phrases. data structures, design patterns, genericity, representation.

21



22 VIRGINIA NICULESCU

Figure 1. Storage interface, and some fundamental data
structures - arrays, lists and trees.

The arrays, and linked representations for lists and trees are considered
first level data structures. In order to implement a set or a map we can use
an array, or a linked list or a tree; so sets and maps are examples of second
level data structures. Figure 1 presents the UML class diagram for some
first level data structures. We have considered dynamic arrays, lists that are
implementation of an interface RefList for which the positions of elements in
the list are of a reference type (singly or doubly linked, with dynamic or static
allocation), and binary trees with a linked representation using nodes. (A
reference is considered to be any value that is used in order to obtain another
value; examples of references are: memory addresses (pointers), indices in a
table, etc.)

2.1. Adapter. The problem that could arise is when we have an already devel-
oped library for fundamental data structures that is not based on this frame-
work. In this case the Adapter [3] design pattern can be used.

Adapter design pattern allows the conversion of the interface of a class into
another interface clients expect. Adapter lets classes work together that could
not otherwise because of incompatible interfaces.

The adaptation has to be done in a way that minimize the time-complexities
of the implementations of adapted methods. For example, in order to adapt a
linked list to be used as a simple storage we may define the method add from



STORAGE INDEPENDENCE IN DATA STRUCTURES IMPLEMENTATION 23

Figure 2. Building sets using generic storage for representation.

the Storage interface by using the method addFirst from the list implementa-
tion which has a time complexity of Θ(1).

2.2. Bridge. In order to implement a second level data structure we have
to start from the corresponding abstract data type corresponding to which
we may define an interface, and then based on the possible representations
to implement concrete classes. The process could be simplified by using the
Bridge design pattern.

Bridge design pattern decouples an abstraction from its implementation
so that the two can vary independently.

Generally, if we have different ways of representation or storage, for a data
structure, we may separate the storage from the data structure using Bridge
design pattern.

We may consider the case of Set data structure. The advantages of this
separation is that we will have only one class Set, and we may specify when we
instantiate this class what kind of storage we want, for a particular situation.

This solution for implementing sets uses a reference to a general storage.
The diagram of the Figure 2 presents the details of this solution. Set – the
new created data structure – could also be seen as a storage that can be used
in other contexts, and because of this the class Set implements the interface
Storage too.

Since the class Set uses a storage in order to store its elements, the con-
structor of the class Set have to be able to initialize this storage. A direct
and simple solution –but not the best – would be to give to this constructor a
parameter (of type storage) that could initialize the storage.

The specific operations of the Set data structure are implemented based
on the operations of the storage.

Other examples may be considered for multi-sets, maps, dictionaries, a.s.o.
Important restrictions related to the storage are that initially it has to be

empty, and also it has to be an unshared storage.



24 VIRGINIA NICULESCU

Figure 3. Factories for creating arrays, lists, and binary trees.

Generally, the data structures are used in very many different contexts
and because of this it becomes important to allow their creation in a flexible
and dynamical way.

These requirements could be achieved by using creational design patterns.
More precisely, we will use Abstract Factory to create each special storage

dynamically.
Singleton design pattern assures the fact we have only one instance created

for a certain type, and we have a global access point to it. Since we don’t need
more than one instance of a specific factory class, Singleton design pattern will
be used for each.

Abstract Factory design pattern provides an interface for creating families
of related or dependent objects without specifying their concrete classes [3].

The concrete products, in which we are interested in, are the fundamental
data structures. This means that we define factories for each type of these
products; the method createStorage() returns an empty storage of a specialized
type. The Figure 3 emphasizes this.

The solution for implementing sets using Bridge but also Abstract Factory
and Singleton is presented in the Figure 4.

3. Specialized Storages

An evaluation has to be done relative to the efficiency of the implemen-
tation of the operations add, and remove. For a general storage, the post-
condition of the operation add specified just the fact that the parameter (of
type Element) exists in the storage. In a similar way the remove operation
assure the fact that one instance equal to the parameter has been removed
from the storage. The implementation of the operation belongs of the class



STORAGE INDEPENDENCE IN DATA STRUCTURES IMPLEMENTATION 25

Figure 4. Building sets using factories for creating different
storage for representation.

Figure 5. Different types of Storages and the relations be-
tween them.

Set is based on using the iterator – that implies a time-complexity linear in
the size of the storage. In order to improve this, a specialized storage has to
be defined – SearchableStorage, which add a new method search. A searchable
storage is a storage that is able to implement a searching operation with a
time-complexity better than for a sequential search. Examples of searchable
storages are a hash table, and different types of sorted data structures.



26 VIRGINIA NICULESCU

Another useful specialization of a storage is SortedStorage. This kind of
storage is useful for the implementation of sorted data structures where el-
ements are compared using an instance of type Comparator. Comparator is
another design pattern which is very much used in relation with data struc-
ture implementation. A SortedStorage is a specialization of a SearchableStorage
since for sorted data structures we can define efficient searching operations.
The Figure 5 presents the relation between these types of storages. The speci-
fication of the interface SortedStorage enforces the postcondition of the method
getIterator by imposing the condition that the order in which the elements are
iterated is based on comparison criteria specified by the comparator.

4. Conclusions

By separating the concrete representation of a data structure by the be-
haviour of its type we introduce a new level of indirection and so a new level
of abstraction. Using this, we are able to implement data structures based on
different fundamental data structures without creating more than one class.
So, a new level of genericity is introduced, too.

Storage interfaces also introduce a classification between data structures.
We emphasize the fact that each data structure could be used as storage for
another data structure or as a generic storage in a generic program.

As it is already known, design patterns are very important mechanism for
increasing the level of abstraction in programming. In order to achieve storage
independence we have used design patterns as Abstract Factory, Singleton,
Bridge, Comparator and Adapter.

Acknoledgement: This work was supported by CNCSIS - UEFISCDI, project
number PNII - IDEI 2286/2008.

References

[1] Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns
in Java, Wiley Computer Publishing, 1999.

[2] H.E. Eriksson, M. Penker, UML Toolkit. Wiley Computer Publishing, 1997.
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object Oriented Software, Addison-Wesley, 1995.
[4] E. Horowitz. Fundamentals of Data Structures in C++. Computer Science Press, 1995.
[5] D. Nguyen. Design Patterns for Data Structures. SIGCSE Bulletin, 30, 1, 1998, 336-340.
[6] V. Niculescu, Teaching about Creational Design Patterns, Workshop on Pedagogies

and Tools for Learning Object-Oriented Concepts, ECOOP’2003, Germany, July 21-
25, 2003.

[7] V. Niculescu. On Choosing Between Templates and Polymorphic Types. Case-study.,
Proceedings of “Zilele Academice Clujene”, Cluj-Napoca, June 2003, pp.71-78.

[8] D.M. Mount. Data Structures, University of Maryland, 1993.

Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca
E-mail address: vniculescu@cs.ubbcluj.ro


