
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

A SOFTWARE FRAMEWORK FOR SOLVING

COMBINATORIAL OPTIMIZATION TASKS

ISTVAN-GERGELY CZIBULA, GABRIELA CZIBULA AND MARIA-IULIANA
BOCICOR

Abstract. Due to the major practical importance of combinatorial opti-
mization problems, many approaches for tackling them have been devel-
oped. As the problem of intelligent solution generation can be approached
with reinforcement learning techniques, we aim at presenting in this paper
a programming interface for solving combinatorial optimization problems
using reinforcement learning techniques. The advantages of the proposed
framework are emphasized, highlighting the potential of using reinforce-
ment learning for solving optimization tasks. An experiment for solving
the bidimensional protein folding problem developed using the designed
interface is also presented.

1. Introduction

Combinatorial Optimization (CO) problems have a major practical im-
portance. All these problems are searching for one or more optimal solutions
in a well defined discrete problem space. The current real-life combinatorial
optimization problems (COPs) are difficult in many ways: the solution space
is huge, the parameters are linked, the decomposability is not obvious, the
restrictions are hard to test, the local optimal solutions are many and hard to
locate, and the uncertainty and the dynamicity of the environment must be
taken into account.

Due to the importance of CO problems, many algorithms to tackle them
have been developed [3]. Incremental search algorithms use past experience to
form feasible solutions. The “goodness” (optimality) of the resultant solution
is the only type of feedback available in many cases [8]. Since we expect the
system to learn based on its past experience and generate better solutions over

Received by the editors: February 7, 2011.
2010 Mathematics Subject Classification. 68N01, 65K10, 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning ; D.1.5[Software]: Programming Techniques – Object-Oriented Pro-
gramming .

Key words and phrases. Software framework, reinforcement learning, protein folding.

3



4 ISTVAN-GERGELY CZIBULA, GABRIELA CZIBULA AND MARIA-IULIANA BOCICOR

time using only this limited information, the problem of intelligent solution
generation can be approached with reinforcement learning (RL) [10].

Reinforcement Learning (RL) is an approach to machine intelligence in
which an agent can learn to behave in a certain way by receiving punishments
or rewards on its chosen actions [10].

The aim of the approach proposed in this paper is to make an abstraction of
the issue of solving combinatorial optimization problems using reinforcement
learning techniques. In this direction we propose a programming interface
and we develop, using the proposed framework, an application for solving the
bidimensional protein folding problem using reinforcement learning.

The rest of the paper is structured as follows. Our RL based interface
proposal is presented in Section 2. An experiment for solving the bidimensional
protein folding problem developed using the proposed interface is reported in
Section 3. Conclusions and further work are outlined in Section 4.

2. The RL based framework

The idea of using RL in optimization problem solving has appeared before
[8], and several approaches were developed for solving particular optimization
problems [13, 8]. We have previously introduced in [4, 5] a reinforcement
learning based model for solving a well known optimization problem within
bioinformatics, the protein folding problem, which is an NP-complete problem
[2] that refers to predicting the structure of a protein from its amino acid
sequence. Protein structure prediction is one of the most important goals
pursued by bioinformatics and theoretical chemistry; it is highly important in
medicine (for example, in drug design) and biotechnology (for example, in the
design of novel enzymes).

In this section we propose an API that allows to simply develop appli-
cations for solving combinatorial optimization problems using reinforcement
learning techniques. In the framework that we propose we make an abstraction
of the way the optimization problem to be solved is modeled as a reinforcement
learning task [10]. This is the major advantage of our RL interface proposal:
the reinforcement learning algorithm is defined independent of the way the
environment, states and actions are defined.

The interface is realized in JDK 1.6 and has four basic modules: agent,
environment, reinforcement learning, and simulation. As in a general agent
based system [12], the agent is the entity that interacts with the environment,
that receives perceptions and selects actions. The agent learns using rein-
forcement learning to achieve its goal, i.e to find an optimal solution of the
corresponding optimization problem. Generally, the inputs of the agent are
perceptions about the environment (in our case states from the environment),



A SOFTWARE FRAMEWORK FOR SOLVING OPTIMIZATION TASKS 5

the outputs are actions, and the environment offers rewards after interacting
with it. The interaction between the agent and the environment is controlled
by a simulation entity.

In the following, we will briefly describe the responsibility of the main
elements from the programming interface that we introduce for solving com-
binatorial optimization problems using reinforcement learning.

Agent. The agent is the entity that interacts with the environment, re-
ceives perceptions (states) from it and selects actions. The agent learns by
reinforcement and could have or not a model of the environment. It is the
basic class for all the agents. The specific agents will implement the Agent
interface. The main responsibility of the Agent class is to select the most
appropriate action it has to perform in the environment.

Environment. The environment basically defines the optimization prob-
lem to solve. In our approach, the environment will have an explicit repre-
sentation as a space of states. It is the basic class for all environments. The
specific environments will implement the Environment interface. The Envi-
ronment has a function that determines the environment to make a transition
from a state to another, after executing a specific action. This function also
gives the reward obtained after the transition. The environment stores an
instance of its current state.

ReinforcementLearning. Is the class that is responsible with the re-
inforcement learning process. The framework provides implementations for
Q − learning, SARSA and SARSA(λ). λ refers to the use of an eligibil-
ity trace [9] for obtaining a more general and efficient learning method. The
EligibilityTrace class is responsible with managing eligibility traces.

Simulation. Is the object that manages the interaction between the agent
and the environment. An instance of the simulation class is associated with
an instance of an agent and an environment at the creation moment. The
simulation object is responsible with collecting data, managing the learning
process and providing the optimal policy that the agent has learned.

Figure 1 shows a simplified UML diagram [6] of the interface, illustrating
the core of the RL interface. It is important to mention that all the classes
provided by the interface remain unchanged in all applications for solving
combinatorial optimization problems using reinforcement learning. What is
outside the core are reference implementations.

As a conclusion, we summarize the main advantages of using the framework
proposed in this paper:

• Provides an easy way to model optimization problem solving as a re-
inforcement learning problem.



6 ISTVAN-GERGELY CZIBULA, GABRIELA CZIBULA AND MARIA-IULIANA BOCICOR

Figure 1. The diagram of the programming interface

• The effort for developing an application for solving optimization prob-
lems using reinforcement learning is reduced – we need to define only
a few classes. The framework offers default implementations for most
of the RL related algorithms, the user only needs to define the classes
that describe the concrete optimization problem (classes that imple-
ment the State, Environment and Action interfaces).
• In a scenario of solving an optimization problem using reinforcement

learning, the proposed interface simply allows experimentation with
different conceptual models for the states, the actions, different RL
algorithms, different reinforcement functions.

3. Experiment

In order to experimentally evaluate the proposed framework, we are ad-
dressing in the following the Bidimensional Protein Folding Problem (BPFP ),
more exactly the problem of predicting the bidimensional structure of proteins,
a well known optimization problem within bioinformatics. In the proposed
experiment, we use the reinforcement learning model for solving BPFP that
have been previously introduced in [4].

Let us consider a HP protein sequence P = HHPH, consisting of four
amino acids. The aim is to find a configuration of P whose energy [1] is
minimum. The state space of the RL model consists of 85 states, and the
action space consists of four actions available to the problem solving agent



A SOFTWARE FRAMEWORK FOR SOLVING OPTIMIZATION TASKS 7

and corresponding to the four possible directions L(Left), U(Up), R(Right),
D(Down) used to encode a solution [4, 5].

In order to use the interface proposed in Section 2 for solving the above
mentioned problem, we have defined specialized classes for which we exe-
cuted the simulation (BPFState, BPFEnvironment and BPFAction). We have
trained the BPF agent using the Q-learning algorithm. As proven in [11], the
Q-learning algorithm converges to the real Q-values as long as all state-action
pairs are visited an infinite number of times, the learning rate α is small (e.q
0.01) and the policy converges in the limit to the Greedy policy. We remark
the following regarding the parameters setting: the learning rate is α = 0.01
in order to assure the convergence of the algorithm; the discount factor for the
future rewards is γ = 0.9; the number of training episodes is 64; the ε-Greedy
action selection mechanism was used.

Using the above defined parameters and under the assumptions that the
state action pairs are equally visited during training and that the agent ex-
plores its search space (the ε parameter is set to 1), the solution reported after
the training of the BFP agent was completed is the path π = (s1s2s7s28)
having the associated configuration aπ = (LUR), determined starting from
state s1, following the Greedy policy. The solution learned by the agent has
an energy of −1. Consequently, the BPF agent learns the optimal solution of
the bidimensional protein folding problem, i.e the bidimensional structure of
the protein P that has a minimum associated energy (−1).

Using the framework proposed in this paper we can simply select other
conceptual models for the states space and the actions space within the RL
scenario of solving the bidimensional protein folding problem. For example,
we can think at the states space as the set of possible solutions of the BPFP
and at the action space as the set of possible pull move transformations [7].

4. Conclusions and Further Work

We have introduced in this paper a framework that facilitates research in
the direction of solving combinatorial optimization problems using reinforce-
ment learning techniques. We have emphasized the advantages of the proposed
framework, highlighting the potential of using reinforcement learning for solv-
ing optimization tasks.

Further work will be done in order to apply the framework for other op-
timization problems, to extend the evaluation of the proposed framework for
larger bidimensional protein folding problem benchmarks, and to investigate
other conceptual models for the states space and the actions space within the
RL scenario of solving the BPFP .



8 ISTVAN-GERGELY CZIBULA, GABRIELA CZIBULA AND MARIA-IULIANA BOCICOR

ACKNOWLEDGEMENT

This work was supported by CNCSIS - UEFISCDI, project number PNII
- IDEI 2286/2008.

References

[1] C. B. Anfinsen. Principles that govern the folding of protein chains. Science,
181:223–230, 1973.

[2] B. Berger and T. Leighton. Protein folding in HP model is NP-complete. Journal
of Computational Biology, 5:27–40, 1998.

[3] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Comput. Surv., 35:268–308, September 2003.

[4] G. Czibula, M. Bocicor, and I. Czibula. A reinforcement learning model for solving
the folding problem. International Journal of Computer Technology and Applica-
tions, 2:171–182, 2011.

[5] G. Czibula, M. Bocicor, and I. Czibula. An Experiment on Protein Struc-
ture Prediction using Reinforcement Learning. Studia Babes-Bolyai Informatica,
LVI(1):25-34, 2011.

[6] http://www.omg.org/technology/documents/formal/uml.htm. UML webpage.
[7] N. Lesh, M. Mitzenmacher, and S. Whitesides. A complete and effective move set

for simplified protein folding. In Proceedings of the seventh annual international
conference on Research in computational molecular biology, pages 188–195, New
York, NY, USA, 2003. ACM.

[8] V. V. Miagkikh and W. F. Punch III. Global search in combinatorial optimization
using reinforcement learning algorithms. In in Proc. of the 1999 Congress on
Evolutionary Computation (CEC99, pages 189–196. IEEE Press, 1999.

[9] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility
traces. Mach. Learn., 22, January 1996.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[11] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292,
1992.

[12] G. Weiß, editor. Multiagent Systems: A Modern Approach to Distributed Artifi-
cial Intelligence. MIT Press, Cambridge, MA, USA, 1999.

[13] W. Zhang and T. G. Dietterich. High-performance job-shop scheduling with a
time-delay TD(Lambda) network. In Advances in Neural Information Processing
Systems 8, pages 1024–1030. MIT Press, 1995.

Babeş-Bolyai University, Department of Computer Science, 1, M. Kogal-
niceanu Street, 400084, Cluj-Napoca, Romania

E-mail address: {istvanc, gabis, iuliana}@cs.ubbcluj.ro


