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LEARNING TO PLAY THE GUESSING GAME

ZSUZSANNA MARIAN, COSMIN COMAN, AND BARTHA ATTILA

Abstract. We present two models from literature (Nagel’s Quantitative
model and Stahl’s Boundedly Rational Rule Learning model) that describe
people’s behaviour when playing the guessing game. Although these mod-
els were defined based on experimental data, when they are implemented
and their result compared to experimental data, the results are not good.
We define a new model, called Refined Boundedly Rational Rule Learning,
based on an existing one, and show that its results are closer to experi-
mental data than the results of the other two.

1. Introduction

Game theory has defined different equilibrium concepts, probably the most
famous of them being the Nash equilibrium. These concepts can be applied
to games to show which strategies would be the best for people playing them.
Unfortunately, experiments show that people rarely play the strategy given by
the equilibrium, but there is no clear explanation about why they do not.
Many different experiments were performed to see how people play exactly,
trying to define general rules that describe their behaviour. Finding such
models of people’s behaviour is important, because some games can model
different economic phenomena, such as: bargaining, auctions, social networks
and so on. This paper presents two algorithms based on existing models that
try to simulate people’s behaviour when playing the Guessing Game. The
first is a simple model, called Quantitative model, while the second is a more
complex one, called Boundedly Rational Rule Learning model. Since these
models, when using to simulate people’s choices do not give good results, we
propose a new one, which is a modification of the second.
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2. Related Work

The guessing game (also called beauty contest game) was developed and
introduces by John Maynard Keynes in ”General Theory of Employment In-
terest and Money” in 1936, as a way to explain price fluctuations in equity
markets [4]. Since its introduction, many different articles have been written
about this game, trying to analyse different aspects of it, such as: the impor-
tance of complete (or incomplete) information for players ([3]), the importance
of the size of groups in games and many different criteria. The Museum of
Money & Financial Institutions even has a flash applet of the game on their
webpage ([5]), where people can choose a number, and see the average result
of choices so far. Currently the average guess is 23.
[1] presents some detailed experiments, and defines a ”step-k” model, that is
later used by [2] for his own model, which is a complex model, with many
different parameters, for which values were estimated based on experimental
data.

3. The Guessing Game

The guessing game is usually played by N players (N ≥ 2), for T (T ≥
1) periods. For each period, each player simultaneously chooses a number
from the [0, 100] interval. The winner of the game is the person whose chosen
number is closer to p (usually p is 2/3, although [1] treats also the case when
p =4/3) times the mean of all numbers, the rest of the players win nothing.
When p is less than 1 the only Nash equilibrium of the game is when all players
play 0, but many different studies and experiments (for example [1, 2]) show
that people rarely play this equilibrium at first. When the game is repeated
many times, usually the numbers chosen by people are lower and lower for
each round, and there are players who learn to play the equilibrium.
In [1] Nagel presents a model that tries to explain the way people play this
game, by introducing the ”step-k” model. In her idea, there are players who
choose their numbers randomly, without forming any idea of the game, and
these are the ones having zero-order belief [1]. Players with first order beliefs
think that the rest of them are zero-order belief players, and choose their
numbers according to this idea and so on. Although theoretically there could
be defined an infinite number of such levels, experiments show that the highest
order present when people play is usually 3.

4. Two existing models

4.1. Quantitative model. This model was described by Nagel in [1] based
on some experiments she performed, during which people played the game for
four sessions, and it is used to describe how people change the value they play
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from one session of the game to another. First of all, an adjustment factor ait
is defined for player i for period t, after the player has chosen a number (xit).
Its value is computed using the formula

(1) ai,t =

{ xi,t

50 for t = 1
xi,t

(mean)t−1
for t = 2,3,4

After all players have chosen their numbers, the optimal adjustment factor
can be computed which gives the optimal deviation from the previous mean,
leading to the current one:

(2) aopt,t =

{
xopt,t

50 = p×(mean)t
50 for t = 1

xopt,t

(mean)t−1
= p×(mean)t

(mean)t−1
for t = 2,3,4

After a round a player can compute his own adjustment factor and he can
also compute the optimal adjustment factor. He then compares the two, and
if ai,t is less than aopt,t then in the next round he will choose a number that
will increase ai,t+1, otherwise he will chose a number that will decrease it.

4.2. The Boundedly Rational Rule Learning Model. The Boundedly
Rational Rule Learning Model is based on Nagel’s ”step-k” model, but adds
learning to it, which means that players of a given step, can learn to play
numbers corresponding to another step. The model is presented in [2] and
it is a complex model, which depends on 14 parameters, whose value was
estimated based on data gathered from experiments. In the following we will
shortly present the model as described in [2]. The model defines K behavioural
rules (corresponding to the steps in Nagel’s model), numbered from 0 to K−1.
They consider the case K = 4. Each player will have a type which corresponds
to these rules, but during the game they can learn to use a rule that is different
from his type. Each player has a vector of propensities which has a value for
each rule. This vector (denoted by ω) is used for computing the probability of
using a behavioural rule. The probability of a player of type k choosing rule
j in a period t (denoted by ϕ(k, j, t)) is given by the following formula:

(3) ϕ(k, j, t) = eω(k,j,t)/
∑
l

eω(k,l,t)

The initial propensities are defined so that the rule corresponding to the
player’s type will have the most chance of being chosen, but other rules will
have a positive probability as well. So, they define ω(k, k, 1) = µ > 0 and
ω(k, j, 1) = 0 for k 6= j. They define a function fk : A → ∆(A) that maps
the previous mean of numbers into a probability density on the set of current
choices. If the mean of choices in the previous round was xt, then the probabil-
ity density of xt+1 for rule k is denoted by fk(xt+1;xt). Since fk(p× xt;xt−1)
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is the probability density for rule k evaluated after the numbers were chosen,
it can be used as a performance measure. Both functions will be of normal
distribution, but, because making a decision is different from evaluating one,
the standard deviation of this performance measure (denoted by gk) is de-
fined using different parameters. In every round, after the player has chosen
a number, the vector of propensities is updated in the following way:

(4) ω(k, j, t) = β0 × ω(k, j, t− 1) + β1 × gj(p× xt−1;xt−2)

The parameter β0 shows how important the current propensity is, while pa-
rameter β1 shows how important the feedback over the current choice is for
the player. The value of gk does not depend on the current value chosen by
the player, it will have the highest value for the k which represents the rule
that would have been the best choice taking into consideration the previous
and the current means. The model does not specify how a number is chosen,
but given a number x(i, t) (the choice of player i in period t) and a player’s
propensities towards the behavioural rules (which lead to the probabilities of
choosing the rules) they define a formula to compute the probability of that
number being chosen.
Finally, Stahl defines four parameters (α0, α1, α2 and α3) to represent the
percentage of the players that have type zero, one, two and three respectively.
They also add a fifth type, called α−1, which represents the players that does
not learn at all, but choose random numbers in every period.

5. Refined Boundedly Rational Rule Learning Model

We have implemented the two models described above to simulate the
game, and see if the results are close to actual experimental results. Unfortu-
nately, neither the Quantitative, nor the Boundedly Rational Rule Learning
model gives a method of generating the next number of a player. For the
Quantitative model, we choose to compute the difference between ai,t and
aopt,t and modify ai,t in the given direction with a random value that is at
most equal to the difference (chosen from a uniform distribution). When we
have the new value of ai,t we can compute x using the formula from 1 (only
that this time x is the unknown). The other model contains a formula to com-
pute the probability of a given number being chosen. We used this formula
and randomly generated one hundred numbers using a uniform distribution
and choose the one for which the probability was the highest.
When testing these models, the only conclusion we could draw was that the
numbers chosen by the models are lower and lower, but this was not sufficient.
So we decided that instead of randomly generating first session choices, use
numbers taken from experimental data and see if numbers chosen for subse-
quent session will be similar to those from experiments. Unfortunately we did
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not have the opportunity to perform experiments and gather data, but Nagel
describes some experiments in detail in [1]. She gives the mean of choices
for the four sessions, moreover, the first period choices of peoples are also
presented on a graph (Figure 1.B) from which we were able to deduce the
numbers chosen by people with a good accuracy. Using these values as first
period choices, we ran our simulation, but it did not give very good results.
When analysing the models, we observed a problem with the Boundedly Ra-
tional Rule Learning model: the way of computing the probabilities based on
the propensities will smooth out very big differences in the propensities. To
try to solve this problem we propose a modified version of the model, called the
Refined Boundedly Rational Rule Learning Model. First we changed Formula
3 to the following one:

(5) ϕ(k, j, t) = ω(k, j, t)/
∑
l

ω(k, l, t)

The only problem with this Formula is, that all but one probability will be
zero initially. This is why we changed the original propensity values from 0 to
0.107 (the number was chosen so that it will give the same probability in the
first period as with the old formula). Experimental results were a little better,
but learning was still very slow, so we decided to modify the value of β1 from
Formula 4. We performed tests with β1 = β0, β1 = 2× β0 and β1 = 4× β0.

6. Experimental Results

We performed test with all three modified values for the value of β1 men-
tioned above. They will be noted RBRRL 1, RBRRL 2 and RBRRL 3, respec-
tively. Results of the test can be seen on Figure 1, where the column ”Nagel”
contains the mean choices from Nagel’s experimental data, while the following
columns contain the results of simulations for the models implemented by us:
Quantitative model, Boundedly Rational Rule Learning model, and the three
above mentioned models. The values are averages for 100 runs. Values for the
first period are similar, because those values were given to the algorithm as
input to have initial values similar to the ones in Nagel’s experiment.
Comparing the results in the columns, we can see that values closest to the
experimental data are in the RBRRL 1 model, where β1 = β0, which means
that the initial type of a player is equally important as the performance in the
last period.

7. Conclusion

We have proposed to implement two models from literature, for simulating
the way people play the guessing game: the Quantitative model from Nagel’s
paper, and the Boundedly Rational Rule Learning model from Stahl’s paper,
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Figure 1. Mean choices for four periods in Nagel’s exper-
iments, the Quantitative Model, the BRRL model and the
RBRRL model with three different values for β1.

to test how well are they doing at predicting the next number a player will
choose. Since they did not give good results, we defined a new model, the
Refined Boundedly Rational Rule Learning, based on the second one.
In lack of own experimental results, we compared the performance of our
model with experimental results found in Nagel’s paper. Results show that all
models give values closer and closer to the Nash equilibrium, just like Nagel’s
experimental results do. Moreover considering the average results for the four
sessions, we can conclude that our model gives the values that are closest to
the ones in Nagel’s paper.
As further work we propose to perform experiments with human players and
repeat the simulations using those values as initial numbers. Also, we propose
finding other models in the literature, implementing and testing them, to see
if they can better model people’s behaviour.
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