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AUTOMATIC SELECTION OF SCHEDULING ALGORITHMS
BASED ON CLASSIFICATION MODELS

FLAVIA ZAMFIRACHE AND MARC FRINCU

ABSTRACT. Selecting the appropriate scheduling algorithm in distributed
heterogeneous systems is a difficult problem. In order to avoid an exhaus-
tive search it is possible to design an automatic selection procedure based
on a classification model trained using various characteristics of the tasks
to be scheduled. This paper presents a comparative study on the effective-
ness of several classification models used to select an effective algorithm
for a given scheduling problem. The main contribution of the paper is the
hybrid classifier based on non-nested generalized exemplars and an evolu-
tionary selection of attributes and exemplars. The experiments show the
ability of the proposed hybrid classifier to identify the appropriate sched-
uling algorithm when new configurations arrive to the grid scheduler.

1. INTRODUCTION

Distributed Heterogeneous Systems require Scheduling Algorithms (SA)
in order to efficiently map tasks on existing resources. However due to the
unpredictable behaviour of the underlying systems SAs are greatly influenced
when trying to optimize the objective cost function (e.g., makespan - time
required to complete the schedule, lateness - time delay in executing a task
given a specified deadline). The efficiency of the heuristic is both influenced
by tasks and system characteristics [1, 7].

So, the problem of designing a SA capable of efficiently dealing with a
wide range of scenarios has been given a lot of attention. However most of
the work focused on creating improved switching algorithms based on existing
scheduling heuristics [2, 7, 9], mostly using the Min-Min and Max-Min SAs [7].
The main issue with switching algorithms is that due to the large amount of
available SAs and to the tendency to discover new improved versions, creating
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a super-SA which contains conditional branches to existing heuristics is inap-
propriate. The reason for this is that the algorithm would require constant
re-editing and would eventually become to hard to comprehend.

An alternative to the switching algorithms is a brute force Best Selection
(BS) strategy in which every existing SA is tested against the existing system
configuration. Despite being efficient in identifying the best SA to be applied
in a given scenario, this solution has the disadvantage of increasing its runtime
when the number of tested algorithms increases. When considering also that
the strategy has to be reapplied periodically the time costs can make the
approach unsuitable. The periodicity is influenced by tasks completion and
arrival events, as they are the only ones that influence the resource load.

Because of the previously mentioned issues an alternative could be to ap-
ply BS only in constructing a training set of data. The training data contains
several platform characteristics of the scheduling scenario (tasks and resources
related) together with the best SA (class label) for that specific configuration,
found by BS. This data set could be used to train a classification system.
Then, when new configurations occur the classifier generated in the previous
step is used to infer the corresponding SA. Different scheduling scenarios need
different scheduling algorithms. Extracting the relationship between the char-
acteristics of a scheduling scenario and the corresponding best scheduling algo-
rithm would allow us to design an automatic procedure to select the algorithm
suitable (assuring the lowest makespan) to a given scenario. This relationship
can be extracted by using either supervised or unsupervised learning. In our
experimental analysis we used techniques belonging to both categories.

In this paper we tested several classification strategies in order to find the
one that ensures the largest classification accuracy and to identify which char-
acteristics of the scheduling events influence most the choice of an adequate
SA. In the experimental analysis we used several classifiers implemented in the
WEKA ' data mining toolkit (MultiLayer Perceptron (MLP) neural network,
Radial Basis Function (RBF) network, Non-Nested Generalized Exemplars
classifier (NNGE)), a Fuzzy C-Mean unsupervised classifier and a hybrid clas-
sifier combining the NNGE algorithm with an evolutionary selection of relevant
attributes and exemplars (called Evolutionary Pruning NNGE: EP-NNGE).

2. THE EP-NNGE CLASSIFIER

The NNGE algorithm is a hybrid instance based learning method which in-
fers from data classification rules represented as non-nested and non-overlapping
axes-parallel hyperrectangles [8]. In order to illustrate the NNGE learning pro-
cess let us consider a set of L training instances (examples), (B, E2,... EF),

"http://www.cs.waikato.ac.nz/~ml/weka/
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each one containing the values of N attributes. The aim of the learning pro-
cess is to construct a set of generalized exemplars (hyperrectangles), H =
{H',H? ..., HX}. A hyperrectangle usually covers a set of training instances
belonging to the same class. The learning process is incremental, for each ex-
ample E7 the following three main steps being applied: -classification (the
hyperrectangle H* which is closest to E7 is identified by using a distance-
based criterion), model adjustment (the hyperrectangle HF is split if it covers
a conflicting example) and generalization (if it is possible, H k is extended,
in order to cover E’). The classification step is based on the computation
of the distance D(F, H) between an example E = (Ey,FEs,...,Eyn) and a
hyperrectangle H = (Hy, Ha, ..., Hy) as given in Eq. (1):

Cd(E,H)
1 D(E,H) = § i
( ) ( ’ ) Wi Emaa: Emm

where d(FE;, H;) is the distance between the examples attributes and the hy-
perrectangles sides (Eq. (2) for numerical attributes and Eq. (3) for nominal
attributes), and w; represent the weights corresponding to attributes and are
computed based on the mutual information between the attribute and the
class.

0 if B; € [H™n, HMoo|
(2) d(Ei, Hy) = { E;— H"* if B; > H™
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Once the set H of hyperrectangles has been generated by the NNGE al-
gorithm, it can be postprocessed in order to reduce its size and, hopefully, to
improve the classification accuracy. Following the idea of the hyperrectangles
selection presented in [6] we developed an evolutionary pruning algorithm act-
ing as postprocessor of the results produced by NNGE [10]. The first version
of the algorithm, called EP-NNGE (Evolutionary Pruning in NNGE) is based
on the idea of evolving a population of M binary strings containing K com-
ponents. Each element, z, of the population corresponds to a subset of H,

g., if a component z; has the value 1 it means that Hj is selected into the
model, while if it is 0 it means that H* is not selected. The quality of each
element is quantified using two measures: one related to the accuracy of the
classifier based on the selected hyperrectangles and the other one related to
the reduction of the model size. Thus the fitness of an element x is given by
Eq. (4) where Acc denotes the accuracy, |H| denotes the number of hyper-
rectangles and A € (0,1) is a parameter controlling the compromise between
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the two quality measures.
(4) f(x) = Aee(H(z)) + (1 = N(([H] = [H(2)])/H])

The general structure of the evolutionary selection strategy is inspired by
the adaptive algorithm used in [6]. It uses a population of binary encoded
elements that is evolving by applying a one point uniform crossover operator.
The selection operator was implemented using a truncation selection in order
to preserve the best M elements in the population.

The second approach is that of simultaneously selecting hyperrectangles
and attributes. In this case each element in the population has K + N com-
ponents (K being the initial number of hyperrectangles and N being the total
number of attributes). The corresponding algorithm (EPA-NNGE) has the
same structure as EP-NNGE and the population elements are evaluated also
by using Eq. (4). The main difference between EPA-NNGE and EP-NNGE
is related to the computation of the classification accuracy: when computing
the distance between a test instance and a hyperrectangle, all non-selected
attributes are just ignored in the former case.

3. TESTS AND RESULTS

The supervised and unsupervised classifiers used for testing and their con-
figuration are presented below.

As supervised classification methods we used two neural networks archi-
tectures and a NNGE classifier. For NNGE and RBF classifiers we used the
default parameters values from WEKA toolkit. For MLP classifier we used 7
output neurons (one for each SA), a learning rate of 0.3 and 8 hidden neurons.

Fuzzy C-Means is an unsupervised classification technique which identifies
clusters in data based on some membership values which quantify the degree
of similarity between a data and a cluster. It computes the membership values
in an iterative way using as input only the data and the number of clusters to
be identified. The number of clusters used in tests is equal with 7.

For EP-NNGE and EPA-NNGE classifiers the population dimension is
M = 50 and the stopping criterion is a combination between a maximal
number of generations (100) and a maximal number of generations without
progress (50). The value used for A is 0.995. This value have been chosen in
order to increase the classification accuracy and based on a study developed
on the datasets from UCI Machine Learning Repository.

Each instance in the training set contains values corresponding to the fol-
lowing attributes: the time when the schedule was completed, the mean task
Estimated Execution Time (EET) (in seconds); the mean standard deviation
of the EET; the mean task Estimated Completion Time (ECT) (in seconds);
the mean standard deviation of the ECT; the mean task size (in bytes); the
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mean standard deviation of the task size; the total number of tasks; and the
number of long tasks used in the experiment. Besides this information for
each configuration, the best SA found by BS was added in order to charac-
terize the class. The training set was derived synthetically generated using
the models described in [3]. In addition to them the platform heterogeneity
factor h = Spmaz/Smin — 1 (Smaz 18 the fastest CPU and s, is the slowest
CPU in flops/s) was also considered and used to build two training sets for
homogeneous (h = 0) and heterogeneous (h = 42) environments. Seven SAs
were used for determining the best policy: Max-Min [7], Min-Min [7], Suffrage
[1], MinQL [4], MinQL-Plain [4], DMECT [5] and DMECT?2 [5].

TABLE 1. Classification accuracy

Training | Inst. | Cls. | Fuzzy | MLP | RBF | NNGE | EP- EPA-
set C-Means NNGE | NNGE

h=0 303 | 6 63.93 | 80.85|67.98 | 68.42 | 87.31 87.51
£7.67 | £4.66 | £ 10.00
h=24 366 | 6 74.81 | 81.42|50.54 | 6541 | 85.34 | 8591
£6.82 | £ 5.00 | £10.00
mixed | 669 | 7 68.2 65.32 | 66.24 | 64.32 | 83.70 83.16
+4.44 | + 4.33 | £10.00

The average runtime of each (un)supervised technique was below 2.5s
(training step + classification), while the BS strategy in the case of the 7
SAs requires around 6 seconds to complete one schedule event. The high clas-
sification percentages as well as the low runtimes make the learning techniques
suitable for determining the best SAs without requiring a BS or switching pol-
icy.

Table 1 presents the accuracy of the classification techniques. The be-
haviour of EP(A)-NNGE classifiers is similar for the three data sets even if
the number of selected attributes involved in classification process varies from
100% rate for the first approach to 47% rate for the second one. But in the
case of less attributes selection a larger variance is noticed. By analysing the
mutual information of each attribute it follows that the biggest amount of
information is offered by the number of tasks involved in the scheduling event
(weight = 0.53) followed by the task duration information (number of long
tasks - weight = 0.26, % of long task - weight = 0.16). These two parameters
are also efficient in determining certain SAs. For instance the total number
of tasks is an important parameter for selecting DMECT while the number of
long tasks is essential in classifying Max-Min (direct consequence of the study
performed in [7]). The rest of the attributes have low weight values (< 0.1).
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4. CONCLUSIONS

The EP-NNGE heuristic variants perform better than the other analysed
classifiers, the most significant difference being observed in case of mixed data
(homogeneous data combined heterogeneous data). The task set characteris-
tics that influence the mostly the scheduling heuristic selection are the tasks’
number and size. Since the test data sets are unbalanced, containing two
dominant classes DMECT and MaxMin, future work will address a hybrid ap-
proach between the EP-NNGE algorithm and some specific techniques applied
in case of unbalanced datasets.
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