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A BRIEF ANALYSIS OF EVOLUTIONARY ALGORITHMS
FOR THE DYNAMIC MULTIOBJECTIVE SUBSET SUM
PROBLEM
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ABSTRACT. The paper investigate the behavior of evolutionary algorithms
for solving multiobjective combinatorial problems in dynamic environ-
ments. Present work envisages the multiobjective subset sum problem
which is known as an NP-hard problem [2]. Several test and analysis are
performed in order to asses the advantages and to point out the disadvan-
tages and drawbacks of these classes of algorithms.

1. INTRODUCTION AND PROBLEM FORMULATION

The paper aims at analyzing the behavior of two classes of evolutionary
algorithms for a well known combinatorial optimization problem — subset sum-
but in its multiobjective form (more than one sum is considered) and in its
dynamic version (the set of elements and the sums change in time).

The idea that motivates the majority of work in dynamic evolutionary op-
timization is the reuse of information uncovered in the past (and, to a lesser
extent, the prediction of future dynamics). In other words, most evolutionary
approaches to dynamic optimization problems (DOP) attempt to reduce the
computational complexity of the dynamic problem by “transferring knowledge
from the past” [1]. The number of publications in the field of dynamic evo-
lutionary computation has increased significantly in recent years: [3]-[8]. The
majority of work is motivated by the presence of real-world problems that are
inherently dynamic: solutions to such problems need to be re-optimised, as
time goes by to ensure feasibility and satisfactory quality.

Even thought the research on DOPs dealing with a single objective to op-
timize id increasing, there is still no significant research dealing with situations
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in which more than one objective is present. This paper proposes a case study
involving multiple objectives and various dynamics.

The two evolutionary methods are a standard genetic algorithm and a
genetic algorithm which uses an external population (archive) to store all the
nondominated solutions found so far during the search process at a time step.
The motivation for the need of such an archive comes in the explanation of
the results obtained by the standard algorithm.

There are numerous variations of the classical subset sum problem, which
is an NP-complete decision problem that may be solved in pseudo-polynomial
time. In this paper, we consider its NP-hard optimization variant: given a set
of positive numbers N and a positive integer S, the task is to find a subset of
N the sum of which is as close as possible to ¢, without exceeding it.

In the multiobjective case, the problem comes slightly modified: given a
set of positive numbers N and m positive integers Si, So, ..., Sy, find m
disjoint subsets of N the sums of whose are as close as possible to any of the
Si, i=1, 2, ...m, without exceeding them.

In the multiobjective case we are interested in finding as many Pareto
optimal solutions as possible.

We consider two dynamic situations: one in which Pareto set is static and
the other one in which Pareto set is dynamic. Objectives values change at
each time step in both situations.

2. DESCRIPTION OF THE ALGORITHMS

The chromosome was represented as a string of size equal to the items in
the set and values from 0 to 1 in case of two objectives and from 0 to 2 in case
of three objectives.

At each iteration, the old population was completely replaced, by repeat-
edly selecting two chromosomes, combining them with a probability P,., and
mutating them on every position with a probability P,,.

Tournament selection was used. To select a chromosome, two random
chromosomes were taken from the population, and the winner was either the
dominant chromosome or, if they were non-dominant, one was randomly se-
lected.

One-point crossover was used. The crossover point was randomly gener-
ated and it was assured that at least a gene from every chromosome would be
transferred into the child.

Mutation was done on every chromosome before adding it to the new
population. Mutation was strong, meaning that the value of a gene before
and after mutation was always different.
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Every iteration was repeated for a number of steps, after which the objec-
tive sums were modified (therefore also the fitness function).

Since the population was completely replaced at every iteration and muta-
tions were involved, there was little chance that all the solutions will be present
in the population at the last iterations; even if a Pareto optimal solution was
found, it would be probably soon replaced. Therefore, we considered a second
algorithm which keeps a special set of Pareto optimal solutions found by the
algorithm — an external archive - that was updated at every iteration with the
new found solutions.

When comparing two chromosomes, we first used Pareto dominance: a
solution dominates another when its fitness is better (lower) with respect to
one objective and equal or better with respect to the other objectives. If
none of the solutions was dominant, the chromosomes were non-dominant and
therefore considered equally good.

This comparison did not yield very good results on the second large data
set (dynamic Pareto set), as it found roughly about 70% of the Pareto optimal
solutions. Therefore, we further compared the non-dominant solutions using
sum of fitness values with respect to every objective, considering better the
chromosome which minimized this sum. The results improved (which was
also influenced by crossover and mutation rate change), more than 90% of the
Pareto optimal solutions being found.

3. EXPERIMENTS

3.1. Algorithm parameters. Experiments are performed on two data sets,
a small and a large one.

We use a crossover rate of 0.6 and a mutation rate of 1/n, n being the
number of items in the set. The experiments on the large data set showed
that a mutation rate two times lower and a higher crossover rate (0.75) would
produce better results.

We used a population of 50 chromosomes for the small data set and of
100 for the large data set. We iterated 20 times at every sum change (time
step) for the small data set and 50 times for the large set. This means that, in
the case of the large data set, 5000 individuals (not necessarily distinct) were
generated out of the 177147 possible (since the large data set consisted of 11
elements).

3.2. Numerical tests. We performed 2 tests for the DOP with 2 and 3 ob-
jectives respectively: one test for static and one for dynamic Pareto set. Each
test considers two data sets. One set is a small set and the other one is larger.
All the results presented here are averaged over 10 different runs.
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The small data set for the dynamic Pareto set consists of the items: 1, 2,
3, 4, 5, 30, with the initial sums (4, 25) which are further modified (at each
time step) into (5, 24), (6, 23) and so on.

The large data set for the dynamic Pareto set consists of the items: 1, 2,
3,4,5,6,7 8, 9,10, 100, and the initial sums are 6 and 65 (and then they
modify into (7, 64), (8, 63) and so on).

The small data set for the static Pareto set is formed by the items: 1, 2,
3, 20, 21, 80, with the initial sums (6, 70) which modify with the time steps
into (7, 69), (8, 68) and so on.

The large data set for the static Pareto set is formed by the items: 1, 2,
3, 4, 5, 30, 31, 32, 135, 150, 200 and the initial sums (15, 118) which modify
into (16, 117), (17, 116) and so on at each time step.

We call the data sets small or large based not the item set but on the
number of Pareto solutions they generate.

It can be easily observed that for the small set both algorithms — standard
genetic algorithm (GA) and GA using archive are able to find a number of
Pareto solutions (see Figure 1 (for dynamic Pareto set and Figure 2 (for static
Pareto set)). It is by far obvious that the algorithm incorporating archive is
able to find a number of solutions close to the real number of Pareto optimal
solutions (as generated by a backtracking algorithm for this simple test).

FiGURE 1. Comparison of standard GA and GA with archive
using a small data set for the dynamic Pareto set case.
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FIGURE 2. Comparison of standard GA and GA with archive
using a small data set for the static Pareto set case.
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In the case of large dataset, it can be noticed form Figures 3 and 4 (corre-
sponding to dynamic and static Pareto set respectively) that the standard GA
manages to increase the number of nondominated solutions as it approaches
the final time steps in the case of dynamic Pareto set. It still remains a signifi-
cant gap between standard GA and GA with archive. It is interesting that the
number of nondominated solutions increases in standard GA in the situation
in which the Pareto set is dynamic and not when it is static.

For the three objectives case we consider same 11 time steps as with the
previous experiments. In this case, Pareto domination relationship among
solutions will return most of the solutions as nondominated among them. This
situation worsens with the increase in the number of objectives (4 or more).
The convergence to the real Pareto from is much slower

The data set used is composed from the items: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
100 and the initial sums are (6, 65, 100) which then modify into (7, 64, 101),
(6, 63, 102) and so on.

Figure 7?7 show the results obtained by the algorithm by averaging the
objectives values for each of nondominated solutions found at the end of each
time step. Minimum, maximum and average values among them are displayed
in the graph. It cannot be observed a linear evolution towards the end of the
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FicURE 3. Comparison of standard GA and GA with archive
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using a large data set for the dynamic Pareto set case.
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FIGURE 4. Comparison of standard GA and GA with archive
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dynamic process which clearly shows the algorithms need some improvements
for an increased number of objectives.

F1GURE 5. Behavior of standard GA for 3 objectives subset
sum problem.
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4. CONCLUSIONS

The paper briefly analysis the behaviors of two types of genetic algorithms
for the multiobjective dynamic version of the subset sum problem. Some of
the conclusions and findings of this study are as follows:

The algorithm preserving all the nondominated solutions found so far dur-
ing the search process approximates better the Pareto frontier.

Pareto nondominance relationship might not always be a relevant com-
parison measure among the solutions and additional information might be
required.

Algorithms require improvements and extra information if the number of
objectives is increased (to 3 or more criteria).
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