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FACTORIZATION METHODS OF BINARY, TRIADIC, REAL

AND FUZZY DATA

CYNTHIA VERA GLODEANU

Abstract. We compare two methods regarding the factorization problem
of binary, triadic, real and fuzzy data, namely Hierarchical Classes Anal-
ysis and the formal concept analytical approach to Factor Analysis. Both
methods search for the smallest set of hidden variables, called factors, to
reduce the dimensionality of the attribute space which describes the ob-
jects without losing any information. First, we show how the notions of
Hierarchical Classes Analysis translate to Formal Concept Analysis and
prove that the two approaches yield the same decomposition even though
the methods are different. Finally, we give the generalisation of Hierar-
chical Classes Analysis to the fuzzy setting. The main aim is to connect
the two fields as they produce the same results and we show how the two
domains can benefit from one another.

1. Introduction and Problem Setting

In this article we compare two methods of factorization: Formal con-
cept analytical approach to Factor Analysis presented in [3] and Hierarchi-
cal Classes Analysis introduced in [6]. Both methods were generalised to the
factorization of triadic data. We have generalised the factorization through
Formal Concept Analysis for the triadic case in [8]. The triadic version of
Hierarchical Classes Analysis was introduced in [10] and an even more general
case in [5]. As we will see in the following, for binary and triadic data, the
two methods both use formal concepts as factors and yield the same results.
We also compare the two approaches for real data sets. Unfortunately, there
is no more a one-to-one correspondence between the two. The formal concept
analytical approach uses fuzzy concepts and performs better than Real-Valued
Hierarchical Classes Analysis. Therefore, it was promising to generalize the
latter to the fuzzy setting, which we also present in this article.
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2. Dyadic Factorization

Formal Concept Analysis [7] has as the underlying structure the notation
of a formal context K = (G,M, I) consisting of two sets G (objects) and M
(attributes) and a binary relation I ⊆ G×M . Then (g,m) ∈ I means that the
object g has the attribute m. The relation I is called the incidence relation of
the context. For A ⊆ G and B ⊆M the derivation operators are defined as

Ap := {m ∈M | (g,m) ∈ I for all g ∈ A},
B p := {g ∈ G | (g,m) ∈ I for all m ∈ B}.

A concept of K is a tuple (A,B) with A ⊆ G and B ⊆ M such that Ap = B
and B p = A. All the objects from A have all the attributes from B in common
and the attributes from B apply to all the objects from A. As in Philosophy,
the extent A contains the objects which fall under the concept’s meaning and
the intent B includes attributes which apply to all the object of the extent.
Finite small contexts can be represented through cross tables. The rows of
the table are named after the objects and the columns after the attributes.
The row corresponding to the object g and the column corresponding to the
attribute m contains a cross if and only if (g,m) ∈ I. Concepts ordered by
the inclusion form complete lattices, see [7].

The formal concept analytical approach to Factor Analysis was presented
in [3] and searches for the smallest subset of formal concepts which covers
the incidence relation of the context. Working with binary matrices, a p × q
binary matrix W is decomposed into the Boolean matrix product P ◦ Q of
a p × n binary matrix P and an n × q binary matrix Q with n as small
as possible. The Boolean matrix product P ◦ Q is defined as (P ◦ Q)ij :=∨n

l=1 Pil ·Qlj , where
∨

denotes the maximum and · the product. The matrix
P has as columns the characteristic vectors of the extents and the matrix Q has
as rows the characteristic vectors of the intents from the concepts contained
in the factorization. Then, the matrices W , P and Q represent an object-
attribute, object-factor and factor-attribute relationship, respectively. That
the factorization has indeed the smallest number of factors follows from the
maximality of formal concepts, i.e., formal concepts correspond to maximal
rectangles full of crosses in the cross table representation of a formal context.

Example 1. Suppose we have a context with patients as objects and symptoms
as attributes. Then, the factors would be the diseases the patients have. The
matrix P associates each patient the disease he/she suffers from and the matrix
Q associates each disease the symptoms it causes. Therefore, the factors have
a verbal description and they can be potentially more fundamental than the
original attributes.
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Hierarchical Classes Analysis was developed in [6] and it addresses the
same factorization problem as discussed above with the same matrix product.
However, the mathematical formalisation is slightly different. We give directly
the translation of the notation into Formal Concept Analysis and just the
definitions for objects. The ones for attributes can be done analogously. In a
formal context (G,M, I) two objects g1, g2 ∈ G are called equivalent iff gp1 = gp2.
The set [g1] := {g ∈ G | gp = gp1} is called the object class of the object g1 ∈ G.
The object set which corresponds to an attribute class can be decomposed
into object classes such that their size is maximal and their number minimal.
These objects are then called object bundles. An object (attribute) bundle is the
extent (intent) of some concept. In Hierarchical Classes Analysis the matrices
P and Q contain the object and attribute bundles, respectively. We have
presented the comparison for the dyadic case between these two approaches
to the factorization problem in [9].

In [3] a greedy approximation algorithm was considered because the fac-
torization problem is NP-hard, but can compute factorizations with up to 15
bundles.

3. Triadic Factorization

The triadic approach to Formal Concept Analysis was introduced by R.
Wille and F. Lehmann in [11]. A triadic context is defined as a quadru-
ple (K1,K2,K3, Y ) where K1,K2 and K3 are sets and Y is a ternary re-
lation between K1,K2 and K3. The elements of K1,K2 and K3 are called
(formal) objects, attributes and conditions, respectively, and (g,m, b) ∈ Y is
read: the object g has the attribute m under the condition b. A triconcept of
(K1,K2,K3, Y ) is a triple (A1, A2, A3) with Ai ⊆ Ki (i ∈ {1, 2, 3}) that is
maximal with respect to component-wise set inclusion.

In [8] we have generalized the factorization problem presented in [3] to
the triadic case.1 We define a triadic factorization as the smallest set F of
triconcepts such that they cover the ternary incidence relation Y of the tri-
adic context. In [8] we have proved that every Boolean 3d-matrix can be
decomposed into the 3d-product of three binary matrices and that by using
triconcepts as factors we obtain the smallest possible factorization. The proofs
are based on the fact that the triconcepts are maximal rectangular boxes in a
triadic context.

1During the revision period of [8] it turned out there is yet unpublished work of R.
Belohlavek and V. Vychodil dealing with the same subject [4].
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The triadic version of Hierarchical Classes Analysis, called Indclas, was
presented in [10]. The main difference to the dyadic version consists in work-
ing with three bundle matrices instead of two. Then, once again, every no-
tation from Indclas can be translated into the language of Triadic Concept
Analysis and the three bundles correspond to the intents, extents and modi,
respectively.

4. Real and Fuzzy Factorization

In the last part we compare the factorization of real valued data through
the formal concept analytical approach to Factor Analysis and Hierarchical
Classes Analysis. The first, uses fuzzy concepts and the second one bundles,
and an association matrix containing the real values. Because the fuzzy fac-
torization yields fewer factors, we propose the generalisation of Hierarchical
Classes Analysis to the fuzzy case.

There are many approaches to Fuzzy Formal Concept Analysis, however,
we consider the method developed independently by Pollandt [13] and Be-
lohlavek [1] as the standard one. A triple (G,M, I) is called a fuzzy formal
context if I : G×M → L is a fuzzy relation between the sets G and M and L
is the support set of some residuated lattice. The fuzzy relation I assigns to
each g ∈ G and each m ∈M a truth degree I(g,m) ∈ L to which the object g
has the attribute m. A fuzzy concept is a tuple of the form (A,B) ∈ LG×LM .

In [2] the formal concept analytical approach to Factor Analysis was gen-
eralised to the fuzzy setting. All the results from the dyadic case can be
translated into the fuzzy case, i.e., a fuzzy factorization is the smallest subset
of fuzzy concepts, such that they cover the fuzzy relation in the fuzzy context.

The disjunctive Hiclas-R model was presented in [12]. It implies the de-
composition of a p × q matrix W with integer entries from V = {1, . . . , v}
in a binary p × n1 object bundle matrix P , a binary q × n2 attribute bun-
dle matrix Q and a rating-valued n1 × n2 core matrix T which takes n3 dif-
ferent non-zero values, where n3 ≤ v. The equivalence relations is defined
analogously to the binary Hiclas model. The association relation is given by
Wij =

∨n1
h=1

∨n2
k=1 Pih · Qjk · Thk for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.

Object i is associated with attribute j at the maximum value of association
indicated by the core matrix T for the pair of bundles which contain object i
and attribute j.

The core matrix also allows association of an object bundle with more
attribute bundles. The association relation is not binary any more, it contains
integer entries, which represent the value of association between an object
and an attribute bundle. On the other hand, the fuzzy concepts contain the
values of association in their membership values for each object and attribute.
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Such a decomposition has a natural interpretation since the factors are fuzzy
concepts. The factorization through fuzzy concepts is a more parsimonious
method. First of all, because it does not require a third matrix, namely the
core matrix. Second, the fuzzy approach yields in general a smaller number of
factors than the bundle decomposition, due to the properties of the t-norm.

The factorization through fuzzy concepts is not possible in the setting
of Hierarchical Classes Analysis, however weaker structures provide optimal
solutions. We call (A,B) a fuzzy preconcept if and only if A ⊆ B p (⇔ B ⊆ Ap,
where p are the fuzzy derivation operators). The fuzzy preconcept (A,B) is
called fuzzy protoconcept if and only if (B p, Ap) is a fuzzy concept of (G,M, I).
We will be searching for the smallest subset of fuzzy protoconcepts which
covers the fuzzy relation in the fuzzy context. Due to the properties of the
t-norms it is possible to choose the fuzzy protoconcept of a fuzzy concept such
that they both yield the same maximal rectangle. With these remarks, we are
able to generalize all the notation from Hierarchical Classes Analysis into the
fuzzy setting.

Definition 1. Let (G,M, I) be a fuzzy context and L the support set of some
residuated lattice. Two fuzzy objects g1(a), g2(b) ∈ G × L are equivalent if
and only if g1(a)p = g2(b)

p. Equivalent objects form an object class. For
two objects g1(a), g2(b) ∈ G × L we call g1 hierarchically below g2, written
g1(a) ≤ g2(b), if and only if g1(a)p ⊆ g2(b)

p.

Note that an object can be hierarchically below itself for different values,
i.e., g1(a), g1(b) ∈ G× L may yield g1(a) ≤ g1(b).

As in the other models of Hierarchical Classes Analysis, we build object
and attribute bundle matrices and define for them the matrix product.

Definition 2. An object bundle is a subset gi1(aj1), ..., gin(ajn) of fuzzy ob-
jects such that gpi1(aj1) ⊆ ... ⊆ gpin(ajn). An object bundle is associated to
an attribute bundle if and only if they form a protoconcept together. For the
matrix representation of a fuzzy context with n bundles and associated object
bundle matrix P and attribute bundle matrix Q, the fuzzy matrix product
is given by (P ◦Q)ij :=

∨n
l=1 Pil ⊗Qlj .

That is, we compute the t-norm multiplication between each element of the
l-th column of P with each element of the l-th row of Q for each l ∈ {1, . . . , n}
and take the maximum over these products.

Compared to the fuzzy factorization with fuzzy concepts this method is
more laborious, since the number of fuzzy protoconcepts is much bigger than
the number fuzzy concepts.
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5. Conclusion

The main aim of this paper is to connect two fields with another and show
how they can benefit from each other. The formal concept analytical approach
to Factor Analysis and Hierarchical Classes Analysis can be connected trough
the factorization problem. We compared these two methods regarding dyadic,
triadic and real data. Concerning the first two data types there is a one-to-
one correspondence between the two methods. Due to reasons of parsimony
and interpretability we developed the fuzzy approach to Hierarchical Classes
Analysis.
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