
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 2, 2011

REINFORCEMENT LEARNING ALGORITHMS IN

ROBOTICS

BOTOND BÓCSI(1) AND LEHEL CSATÓ(1)

Abstract. Modern robots are not build to solve pre-determined tasks,
rather they are designed to tackle a wider class of problems. Finding effi-
cient control algorithms for a new problem within the class is not straight-
forward. Machine learning techniques, e.g., reinforcement learning (RL)
proved to provide suitable methods in finding such control algorithms.
Robotic control learning tasks share several common properties, thus, when
selecting among RL methods one has to consider these properties. In this
paper, we present the state-of-the-art RL algorithms from the perspec-
tive of robotic control. We highlight their advantages and drawbacks in
conjunction with robotic control, hereby, analyzing their feasibility in this
context. Our results are supported by simulated pole balancing control
experiments.

1. Introduction

The aim of machine learning (ML) is to develop algorithms that improve
their performance based on empirical observed data. We aim to use machine
learning techniques in developing intelligent robots. Intelligent robots are de-
fined in this context as instruments – or algorithms – that can adapt to new en-
vironments and new conditions whilst solving the problem they were designed
for. Within the context of implementing adaptive behavior, a promising ML
technique is the application of the reinforcement learning methods. Requir-
ing limited knowledge about the environment, these methods are used with
success in problems like optimal robot control [6], or various tasks involving
unknown environments where agents must move.

Within the problems addressed by RL, robotic control learning tasks share
several common properties, thus, when selecting among RL methods one has
to consider these properties. For example, variables attached with the robotic

Received by the editors: March 14, 2011.
2010 Mathematics Subject Classification. 68T05, 68T40, 60J25.
1998 CR Categories and Descriptors. I.2.9 [Artificial intelligence]: Robotics – Au-

tonomous vehicles; I.2.6 [Artificial intelligence]: Learning – Kowledge aquisition.
Key words and phrases. machine learning, reinforcement learning, robotics, policy

gradient.

61



62 BOTOND BÓCSI AND LEHEL CSATÓ

learning process – e.g., joint angles, joint torques – are continuous, therefore,
methods which handle well continuous state spaces are preferred. Another
requirement is the efficient handling of high dimensional data originated from
robots with many degrees of freedom – e.g., humanoid robots. These features
require a special selection of learning algorithms. In this paper, we analyze the
state-of-the-art RL algorithms from the perspective of robotic control. Several
attempts has been made to takle this problem [6, 1, 3], we present a compara-
tive study of RL methods in conjunction with robotic control, analyzing their
feasibility in this context.

The paper is organized as follows. In Section 2, we define RL and in-
troduce the state-of-the-art RL algorithms, i.e., value based methods, policy
gradient methods, and evolutionary algorithms. These algorithms form the
base of our comparison. In Section 3, we presents a quantitative comparison
of the presented methods based on a simulated pole balancing experiment.
Conclusions are drawn is Section 4.

2. Reinforcement Learning Algorithms

Reinforcement learning (RL) is the learning process when an agent takes
actions in an environment consisting of states and gets reward associated
to state and action pairs [9]. The goal of the agent is to maximize its long-
term reward. Formally RL problems are defined in terms of a Markov Decision
Process (MDP) [7] consisting of a tuple (S,A,P,R, π) where (1) S is the state
space; (2)A is the action space; (3) Pass′ : S×S×A → R, with Pass′ = P (s′|s, a)
are the transition probabilities, i.e., the probability of going from state s to
s′ by taking action a; (4) Rass′ : S × S × A → R is the reward received when
action a was taken in state s followed by state s′; (5) π(s, a) : S ×A → [0, 1],
π(s, a) = P (a|s) is called the policy, that is the probability of taking action a
in state s. A trajectory – a.k.a episode or roll-out – τ is a sequence of triplets
(st, at, rt) ∈ S × A × R with t the time index. The values of the triplets
at+1, st+1, rt+1 are obtained from sampling based on the policy π(s, a) and
the transition probabilities.

By solving an MDP, we understand the finding of a policy π′ that maxi-
mizes the long-term (discounted) reward along a trajectory generated by the
respective policy

π′ = arg max
π

Eπ

[∑
t

γtrt

]
,

where rt ∈ τ , Eπ denotes expectation conditioned on π, and γ ∈ (0, 1] is
a discount factor. The objective of RL is to solve the MDP underlying the
problem. Solving the MDP is not straightforward. To tackle the problem,



REINFORCEMENT LEARNING ALGORITHMS IN ROBOTICS 63

different algorithms has been introduced, approaching the problem from dif-
ferent points of views. Next, we classify the learning approaches into three
classes and present the appropriate methods in details.

2.1. Value function based methods. Value function based methods model
the optimal policy indirectly via so called value functions. The key insight is
that we measure the utility of states and actions respectively, and based on
these values, the optimal policy chooses the action that has to higher utility.

Given an MDP, we define the action-value function, also known as Q
function, that expresses the utility of action a in state s. The definition looks
as follows1

Q(st, at) =
∑
s′

Pass′
[
Rass′ + γmax

a′
Q(s′, a′)

]
.

The optimal action-value function Q is a fixed-point of the above equality.
Then, the optimal policy can be easily computed by taking the most valuable
action in every state, i.e., π(s, a) ∼ arg maxaQ(s, a).

The computation of Q is not trivial, different approaches have been pro-
posed. A fundamental method is temporal-difference learning [9]. It is an
iterative algorithm that updates the values of Q after every action taken based
on the difference between expected and observed Q value. Q-learning [9] is
the mostly used temporal-difference learning methods. It has the following
update rule:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
,

where α ∈ [0, 1] is a learning rate that expresses how much confidence we have
in the observed value.

Is has been shown that temporal-difference learning converges asymptot-
ically to the optimal policy when the accurate representation of the action
value function is possible [9]. However, when the action-state space is contin-
uous – e.g., joint angles, joint torques, in the case of robotic control – function
approximation has to be applied to model the value function. As a conse-
quence, all theoretical convergence guarantees are vanished [4]. When used in
continuous domain, a tabular representation of the value function is advised.
This representation is unfeasible in high dimensional action-state spaces.

2.2. Policy gradient methods. A different approach for solving the RL
problem is to model the policy directly as a parametric function πθ, e.g., by

1The definition of the value function V (s) = maxaQ(s, a) is also possible, however, the
determination of the policy is harder based on V (s).



64 BOTOND BÓCSI AND LEHEL CSATÓ

a neural network, and update its parameters using steepest gradient descent
[8], based on the gradient of the average expected reward:

J(θ) = Eπθ

[∑
t

γtrt

]
.

The computation of the gradient of J(θ) is not tractable, thus, to ease the
difficulties related to calculating the expected return, several approximations
of the gradient have been suggested. We present the three basic approaches.

Finite difference methods compute the gradient by making small perturba-
tion in the parameters of the policy and observing the corresponding rewards.
Then, the gradient is estimated using regression techniques. The generation
of the parameter perturbation is difficult, since it depends on the parameter
space induced by the policy. These methods suffer from slow convergence. For
details about finite difference methods consult Peters and Schaal 2008 [6].

The family of vanilla policy gradient algorithms use the log-ratio method to
compute the gradient [6]. They have several advantages over finite difference
methods. Fewer roll-outs are needed to achieve convergence – it is possible
that a single roll-out leads to an unbiased gradient estimate. Another benefit
is that perturbation – representing the exploration – is not generated in the
parameter space, rather in the action space that is much easier to handle.

To speed up the vanilla policy gradient algorithm, the use of natural gra-
dients [6] has been suggested. The motivation behind natural policy gradient
is that the first order gradient based policy update step does not take into
account the structure of the parameter space. Kakade 2001 [2] introduced the
extension by defining a metric based on the underlying parameter space.

Policy gradient methods can be used with different policy representations,
thus, the policy can be chosen to handle well continuous state spaces and to
scale acceptable with high dimensional data, as well. The major drawback of
the policy gradient methods is that they can easily be stuck in local maxima.
This is a direct cause of the steepest gradient descent learning [8].

2.3. Evolutionary methods. Evolutionary methods are black-box optimiza-
tion algorithms. They optimize a parametric function by keeping a population
of possible function parameters – called individuals –, and combining them
based on the corresponding function values. In RL, individuals are policies
and the function values are the corresponding average expected rewards [5].
Evolutionary algorithms are used with success in RL [1, 3], since they need no
prior knowledge about the learning task.

As well as policy gradient methods, evolutionary algorithms model directly
the policy, thus, share the advantage of good scalability to high dimensional
and continuous state spaces. Although, note that high dimensional tasks may



REINFORCEMENT LEARNING ALGORITHMS IN ROBOTICS 65

require a large population size. Evolutionary methods are less influenced by
being stuck in local maxima solutions but they need significantly more evalu-
ations to converge – see Section 3.

3. Experiments

In this section, we present the simulated robotic experiments we con-
ducted, and highlight the advantages and drawbacks of the presented learning
methods in a robotic control framework. We have conducted experiments to
analyze the performance of the following algorithms: Q-learning, finite differ-
ence method, vanilla policy gradient, natural policy gradient, and evolutionary
algorithms.

The experiments were conducted in a simulated 3D environment – using
the ODE physics simulation library – on a pole balancing robot2 – see Figure
1.(a). The task of the robot – a car with a pole attached on the top – is to
learn how to prevent the pole from falling down by applying force to itself. For
evolutionary methods and policy gradient learning we used neural networks
with no hidden layer as policy. As a measure of performance we used the
average number of episodes needed by the algorithms to find a good policy.

Results based on 393 experiments are shown on Figure 1.(b) where the
variance of the convergence is displayed as well. From the simulations reveals
that the policy gradient based methods outperformed the other algorithms.
The finite difference method is rather slow and the time of convergence has
a huge variance. The vanilla policy gradient algorithm produced better re-
sults than the natural policy gradient, however, it failed to converge in 10% of
the simulations which did not happen in the case of natural policy gradient.
Divergence occurred when the robot was close to the optimal policy and the
magnitude of the gradient was too small, therefore, the update of the param-
eters had almost no effect. Q-learning happened to be stable but produced
the worst results since it does not scale well with high dimensional continuous
state spaces.

Note that all the algorithms are sensitive to parameter settings (e.g., state
space segmentation – Q-learning – , convergence detection – gradient based
methods –, population size – evolutionary algorithms), thus, careful parameter
tuning is required to obtain good performance.

4. Conclusions

In this paper, we analyzed RL algorithms from the point of view of robotic
control. We have shown that algorithms which use direct policy modeling
provide better performance than value based methods. This behavior is a

2Code available at http://cs.ubbcluj.ro/~bboti/downloads/RL_sim.tar.gz.



66 BOTOND BÓCSI AND LEHEL CSATÓ

0

400

800

1200

1600

QLQL

1555.31

FDFD

312.7

VPVP

15.23

NGNG

32.36

EAEA

465.17

N
u
m
b
er

of
ep
is
o
d
es

(a) (b)

Figure 1. (a) Simulated pole balancing robot. (b) Ex-
perimental results, performance measured by the number of
episodes until convergence, for Q-learning (QL), finite differ-
ence method (FD), vanilla policy gradient method (VP), nat-
ural gradient method (NG) and evolutionary algorithm (EA).

direct cause of the continuous action-state spaces induced by robotic control
tasks. The results are based on both theoretical considerations and simulated
robotic control experiments. As future work, we aim to improve the value
based methods by finding suitable value function approximators – e.g., Gauss-
ian processes. We also want to provide theoretical convergence guarantees
when the aforementioned approximations are used.

Acknowledgments

The authors wish to thank for the financial support provided from pro-
gram: Investing in people! PhD scholarship, project co-financed by the Eu-
ropean Social Fund, sectoral operational program, human resources develop-
ment 2007 - 2013: POSDRU 88/1.5/S/60185 – ”Innovative doctoral studies
in a knowledge based society”.

References

1. F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through
cooperatively coevolved synapses, Journal of Machine Learning Research 9 (2009), 937–
965.

2. S. Kakade, A natural policy gradient, Advances in Neural Information Processing Systems
(NIPS), 2001, pp. 1531–1538.

3. J. R. Koza and J. P. Rice, Automatic programming of robots using genetic programming,
Proceedings of the Tenth National Conference on Artificial Intelligence, The MIT Press,
1992, pp. 194–201.

4. F. S. Melo and M. I. Ribeiro, Q-learning with linear function approximation, Proceedings
of the 20th Annual Conference on Learning Theory, Springer-Verlag, 2007, pp. 308–322.



REINFORCEMENT LEARNING ALGORITHMS IN ROBOTICS 67

5. D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, Evolutionary algorithms for rein-
forcement learning, Journal of Artificial Intelligence Research 11 (1999), 241–276.

6. J. Peters and S. Schaal, Reinforcement learning of motor skills with policy gradients,
Neural Networks 21 (2008), no. 4, 682–697.

7. M. L. Puterman, Markov decision processes: Discrete stochastic dynamic programming,
Wiley-Interscience, April 1994.

8. J. A. Snyman, Practical Mathematical Optimization: An Introduction to Basic Optimiza-
tion Theory and Classical and New Gradient-Based Algorithms, Applied Optimization,
Vol. 97, Springer-Verlag New York, Inc., 2005.

9. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, The MIT Press,
March 1998.

(1) Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
1 Kogalniceanu str., RO-400084 Cluj-Napoca, Romania

E-mail address: {bboti, lehel.csato}@cs.ubbcluj.ro


