STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LVI, Number 1, 2011

ADVANCED FUNCTOR FRAMEWORK FOR C++
STANDARD TEMPLATE LIBRARY

NORBERT PATAKI

ABSTRACT. The C++ Standard Template Library (STL) is the most pop-
ular library based on the generic programming paradigm. STL is widely-
used, because it consists of many useful generic data structures and generic
algorithms that are fairly irrespective of the used container. Iterators
bridge the gap between containers and algorithms. As a result of this lay-
out the complexity of the library is reduced and we can extend the library
with new containers and algorithms simultaneously.

Function objects (also known as functors) make the library much more
flexible without significant runtime overhead. They parametrize user-
defined algorithms in the library, for example, they determine the compari-
son in the ordered containers or define a predicate to find. Requirements of
relations are specified, for instance, associative containers need strict weak
ordering. However, these properties are tested neither at compilation-time
nor at run-time. If we use a relation that is not a strict weak ordering, the
containers become inconsistent. Only adaptable functors are able to work
together with function adaptors. Unfortunately, the adapted functors type
requirements come from special typedefs. If these typedefs are errounous
ones, the adapted functor does not work perfectly.

In this paper we present our framework that aims at developing safe
adaptable functors. One of the characteristics tested at runtime, some of
them handled at compilation-time. This framework is based on the object-
oriented and generative features of C+4. Our aim is to develop a safe,
efficient, multicore version of C++ STL in the future.

1. INTRODUCTION

The C++ Standard Template Library (STL) was developed by generic pro-
gramming approach [3]. In this way containers are defined as class templates

Received by the editors: March 24, 2011.

2010 Mathematics Subject Classification. 68N15, 68N19.

1998 CR Categories and Descriptors. D.2 [Software Engineering|: D.2.5 Testing and
Debugging — STL functors; D.3 [Programming Languages]: D.3.2 Language Classifica-
tion — C++.

Key words and phrases. C++4, STL, functors.

99

100 NORBERT PATAKI

and many algorithms can be implemented as function templates. Further-
more, algorithms are implemented in a container-independent way [15], so one
can use them with different containers [24]. C++ STL is widely-used because
it is a very handy, standard C++ library that contains beneficial containers
(like list, vector, map, etc.), large number of algorithms (like sort, find, count,
etc.) among other utilities.

The STL was designed to be extensible. We can add new containers that
can work together with the existing algorithms. On the other hand, we can
extend the set of algorithms with a new one that can work together with the
existing containers. Iterators bridge the gap between containers and algo-
rithms [5]. The expression problem [26] is solved with this approach. STL
also includes adaptor types which transform standard elements of the library
for a different functionality [1].

However, the usage of C++ STL does not mean bugless or error-free code
[8]. Contrarily, incorrect application of the library may introduce new types
of problems [23].

One of the problems is that the error diagnostics are usually complex,
and very hard to figure out the cause of a program error [27, 28]. Violating
requirement of special preconditions (e.g. sorted ranges) is not tested, but
results in runtime bugs [11, 19]. A different kind of stickler is that if we have
an iterator object that pointed to an element in a container, but the element
is erased or the container’s memory allocation has been changed, then the
iterator becomes invalid [9]. Another common mistake is related to removing
algorithms. The algorithms are container-independent, hence they do not
know how to erase elements from a container, just relocate them to a specific
part of the container, and we need to invoke a specific erase member function
to remove the elements phisically. Since, for example the remove algorithm
does not actually remove any element from a container [14].

C++ STL is very efficient in a sequential realm, but it is not aware of
multicore environment [4]. For example, the Cilk++ language aims at multi-
core programming. This language extends C++ with new keywords and one
can write programs for multicore architectures easily. But the language does
not consist of an efficient multicore library, but the C++4 STL only which is
an efficiency bottleneck in multicore environment. We develop a new STL
implementation for Cilk++ to cope with the challenges of multicore architec-
tures. This new implementation can be safer solution, too. Hence, our safety
extensions will be included in the new implementation. However, the advised
techniques presented in this paper concern to the original C++ STL, too.

Most of the properties are checked at compilation time. For example,
the code does not compile if one uses sort algorithm with the standard list
container, inasmuch as list’s iterators do not offer random accessibility [12].

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 101

Other properties are checked at runtime. For example, the standard vector
container offers an at method which tests if the index is valid and it raises an
exception otherwise [18].

Unfortunately, there is still a large number of properties that are tested
neither at compilation-time nor at run-time. Observance of these properties
is in the charge of the programmers.

Functor objects make STL more flexible as they enable the execution of
user-defined code parts inside the library. Basically, functors are usually simple
classes with an operator(). Inside the library operator()s are called to
execute user-defined code snippets. This can called a function via pointer to
functions or an actual operator () in a class. Functors are widely used in the
STL because they can be inlined by the compilers and they cause no runtime
overhead in contrast to function pointers. Moreover, in case of functors extra
parameters can be passed to the code snippets via constructor calls.

Functors can be used in various roles: they can define predicates when
searching or counting elements, they can define comparison for sorting ele-
ments and properly searching, they can define operations to be executed on
elements.

Associative containers (e.g. multiset) use functors exclusively to keep
their elements sorted. Algorithms for sorting (e.g. stable_sort) and searching
in ordered ranges (e.g. lower bound) typically used with functors because of
efficiency. These containers and algorithms need strict weak ordering [2].

A relation is strict weak ordering, if it is irreflexive, antisymmetric and
transitive. A relation is irreflexive, if no element is related to itself. A relation
is antisymmetric, if two elements are in relation and these two elements are in
relation in reverse order means that two elements are the same. A relation is
transitive if whenever an element a is related to an element b, and b is in turn
related to an element ¢, then a is also related to ¢. For example, internal types’
operator< is strict weak ordering relation in contrast to their operator>=,
that are not strict weak ordering.

The rest of this paper is organized as follows. In section 2 we show the
necessity of a framework to develop safe functors. We present our approach
for testing functors at runtime in section 3. We detail how to develop safe
adaptable functors with our framework in section 4. Finally, we conclude our
results in section 5.

2. MOTIVATION

In this section we present motivating examples. We detail the background
of the problems because they are not evident.

102 NORBERT PATAKI

All standard associative containers (std: :set, std: :multiset, std: :map,
std: :multimap) keep elements ordered. These containers are template classes
— among other template parameters they have a type parameter which stands
for the type of comparison functor. That is, in this case it is not possible to
pass function pointers. We must use functor types instead. From this type the
containers create object to evaluate the comparison between elements. This
parameter has default value which is std: :1less<T>, where T is the key type
of the container. The functor must be strict weak ordering, but this property
is not checked, so it is not difficult to write an erroneous one [16], for example:

struct Compare :
std::binary_function<int, int, bool>

{
bool operator() (int i, int j) const
{
return !'(i < j);
}
3

struct Stringlengthless
std::binary_function<std::string, std::string, bool>

{
bool operator() (const std::string& a,
const std::string& b) const
{
return a.length() <= b.length();
}
s

These functor types can be compiled, and they do not raise exception
or assertation at runtime, too. On the other hand, neighter is strict weak
ordering, especially as they do not meet the requirement of irreflexivity. The
usage of these functors makes associative containers inconsistent:

std::set<int, Compare> sc;
sc.insert(3);

sc.insert(3);

// sc.size() ==

// sc.count(3) ==

std::multiset<int, Compare> mc;
mc.insert(7);
// mc.count(7) ==

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 103

Many standard algorithms can be used for searching in ordered ranges,
for instance binary_search, lower_bound, etc. All of these algorithms are
overloaded and they can take a comparison functor as a parameter. These
algorithms require strict weak ordering as well.

std::vector<int> v;

v.push_back(4);

v.push_back(5);

// ...

std::sort(v.begin(), v.end(), Compare());

std: :vector<int>:: iterator i =
std: :lower_bound(v.begin(), v.end(), 4, Compare());

if (i '= v.end(Q))
{
std::cout << "Not found";

}

When we use the erroneous functors, these algorithms cannot find elements
in containers, hence they seem to be defective.

However, these examples are the most simplest ones. In case of more
complex classes it is much easier to make a mistake.

As a general rule, two comparisons are used in the STL. One of them
is called equality, and this is based on operator==. Algorithms, like find
use equality when searching. Another one is called equivalence and this one
is based on the relative ordering of object values in a sorted range. Two
objects x and y have equivalent values with respect to the sort order if neither
precedes the other in the sort order, so the following expression is evaluated:
lkeycomp() (x,y) && !'keycomp() (x,y), where keycomp is the type of the
functor.

Let us consider what happens if the strict weak ordering requirement is
violated, for example, the functor is based on operator<=. When elements
are inserted into a std::set, the container has to examine if the element is
already in the container. The container’s insert method uses equivalence.

s.insert(3);
s.insert(3);

The second call of insert evaluates the following expression to check if
value 3 is in the set:
1(3<=3) && !(3<=3)
The result of this expression is false, that can be interpreted as “3 is not equal
to 3”7. This fact accounts for the previous strange behaviour of associative

104 NORBERT PATAKI

containers. The container finds that 3 is not in the set, so it inserts once
more. The set is not set anymore. The set’s count member function cannot
find any element that is equal to its parameter. The associative containers
become inconsistent this way [pirkelbauer:runtime. This problem itself is not
specific to C++, similar mistakes can be made in Java [21].

Adaptable functors are special functors which can be used with functor
adaptors, such as not1 or bind2nd [14]. Binder allow us to convert a binary
function to a unary function, by binding one of the arguments to a given value
(given at runtime). notl negates the unary predicate, not2 negates the binary
predicate, respectively.

Adaptable functors need some extra typedefs, and the adapted functors
are generated based on these typedefs. The standard base type templates
unary_function and binary_function are responsible to guarantee these nec-
essary typedefs. Thus, the author of a functor class is responsible to make
sure if the adapted works properly. It would be more elegant if the these
typedefs come from the functor’s operator (). If the template arguments of
unary_function or binary function disagree to the functor’s operator() it
may also results in compilation-time or run-time errors.

Let us consider the following predicate:

struct AnotherBadPredicate: std::unary_function<int, bool>

{

double x;
AnotherBadPredicate(const double& d): x(d) {}

bool operator() (const double& a) const
{
return a < X;
}
+;
This functor works perfectly, unless it is used without adaptors. However,

if we have a vector, and we try to find the first element that is not less than
a given value, we can negate the previous predicate:

std: :vector<double> v;
v.push_back(2.5);
v.push_back(8.3);

std::vector<double>::iterator i =
std::find_if(v.begin(),
v.end(),

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 105

std::not1(AnotherBadPredicate(2.3));

if (i !'= v.end())
{

std::cout << *i << std::endl;
}

This code snippets highlights that 8.3 is the first element in the vector
which is not less than 2.3. This result is faulty because 2.5 is the first element
that is not less than 2.5. However, the problem itself the template argu-
ment of base template class std: :unary_function<int, bool> inasmuch as
the generated negated predicate take the parameter as integer value. In the
negated functor 2.5 as integer is 2 and it calls the original functor with this
value. The original functor takes the parameter 2.0 as double value and 2.0
< 2.5 is true, so it returns true. The generated functor negates this result,
thus std::not1(AnotherBadPredicate(2.3) return false when it takes
2.5 value. However, this root cause of this problem is the duplication. The
author has to repeat the type of operator()’s argument types. If it disagrees
it could make the negated functor erronous. The compiler should deduce the
parameters of operator () to avoid this kind of problems. However, if the two
different types cannot be converted it results in compilation errors. One of
the aims of our framework is detect this problem at compilation time.

3. SAFE FUNCTORS

In this section we present our framework approach to test functors at
runtime if they are strict weak ordering.

Our approach is based on object-orientation and inheritance be-
cause functors typically are inherited from std::binary function or
std: :unary_function class templates, therefore this approach is plausible.
Functor adaptors, such as std: :not2 to negate predicates, take advantage of
some typedefs that comes from the base type. For instance, standard functor
types are written this way. So we can take advantage of the automatic call of
the base class’s default constructor.

The type of functor is passed to the strict_weak ordering class template
as well as the type of parameter of its operator (). We force the base object
to be the instance of subtype’s class, which is the type of functor actually.
We take advantage of static_cast which is able to do casts between pointer
types. This is not a problem in this case because we designed this class to
be superclass. We can call the functor’s operator() this way. We assume,
that the type T has default constructor. It is not serious restriction because
most classes do have default constructor. Note, we cannot take advantage

106 NORBERT PATAKI

of virtual functions or dynamic_cast because in constructors only the static
type is available. Unfortunately, we cannot use static_cast without pointers
because it would create a new object which has to be evaluated with our ap-
proach. This means an infinite recursion. Our approach is based on curiously
recurring template pattern (CRTP) [1]. This pattern replaces the dynamic
polymorphism with compile-time mechanism [7].

This way we create a test case that is evaluated when the functor object is
constructed. If the testcase fails it throws an exception, otherwise, it does not
mean necessarily that the functor itself is perfect. However, most of erronous
functors fail on this test because typically the irreflexevity is violated, and
our approach focuses on this characteristic. Moreover, specializations can be
created for more complex testcases.

Only the operator () is called after a static_cast operator. This is quite
reasonable and negligible overhead for safety functors [20].

So, First, we create a new exception type:

struct bad_functor_exception
{
//
3
After we develop the essence of our approach:

template <class T, class functor_to_check>
struct strict_weak_ordering
{

strict_weak_ordering()

{

if (static_cast
<functor_to_check*>(this)->
operator() (TO, TO)

{
throw bad_functor_exception();
}
}
3
The strict_weak ordering template class is easy to use when one writes
a new functor type. The new functor type must be inherited from the instan-
tiated strict_weak ordering class. This way this approach is non-intrusive.

struct Compare :
std: :binary_function<int, int, bool>,
strict_weak_ordering<int, Compare>

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 107

{
bool operator()(int i, int j) const
{
//
}
s

As mentioned before, specializations can be created for specific types. In
the specializations more complex test cases can be evaluated. But if we in-
crease the number of test cases the runtime overhead increases, too. Let us
consider the following examples:

template <class functor_to_check>
struct strict_weak_ordering<int, functor_to_check>
{
strict_weak_ordering()
{
functor_to_check* p = static_cast<functor_to_check*>(this);
if (p->operator(O(3, 3) |I|
p—>operator() (22, 22))
{
throw bad_functor_exception();
}
}
3

template <class functor_to_check>
struct strict_weak_ordering<std::string, functor_to_check>

{

strict_weak_ordering()

{
const std::string test = "Hello World";
if (static_cast
<functor_to_check*>(this) ->
operator() (test, test))

throw bad_functor_exception();

108 NORBERT PATAKI

External testing frameworks are also able to check these properties [17].
But external testing frameworks typically need external tools [6]. Our ap-
proach does not require any external tool, programmers have to design func-
tors by inheritance which is straightforward as mentioned before. With our
approach the average user of the library can write functors safely without
any testing framework and difficult mathematical background. Our approach
works perfectly automatically, too.

4. ADAPTABLE FUNCTORS

In this section we present how our framework can be used to write perfect
adaptable functors.

Compilers cannot emit warnings based on the erroneous usage of the li-
brary. STLlint is the flagship example for external software that is able to
emit warnings when the STL is used in an incorrect way [10]. We do not want
to modify the compilers, so we have to enforce the compiler to indicate if an
adaptable functor type is defective. However, static_assert as a new key-
word is introduced in C++40x to emit compilation errors based on conditions,
but no similar construct is designed for warnings.

template <class T>
inline void warning(T t)

{
b

struct IMPROPER_FUNCTOR_BASE
{
};

/...

warning (IMPROPER_FUNCTOR_BASE());

When the warning function is called, a dummy object is passed. This
dummy object is not used inside the function template, hence this is an unused
parameter. Compilers emit warning to indicate unused parameters. Compi-
lation of warning function template results in warning messages, when it is
referred and instantiated. No warning message is shown if it is not referred.
In the warning message the template argument is referred.

Different compilers emit this warning in different ways. For instance, Vi-
sual Studio emits the following message:

warning C4100: ’t’ : unreferenced formal parameter

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 109

see reference to function template instantiation ’void
warning<IMPROPER_FUNCTOR_BASE> (T)’
being compiled

with
[

T=IMPROPER_FUNCTOR_BASE
]

And g++4 emits the following message:

In instantiation of ’void warning(T)
[with T = IMPROPER_FUNCTOR_BASE]’:
instantiated from here
. warning: unused parameter ’t’

Unfortunately, implementation details of warnings may differ, thus no uni-
versal solution to generate custom warnings.

This approach of warning generation has no runtime overhead inasmuch
as the compiler optimizes the empty function body. On the other hand — as
the previous examples show — the message refers to the warning of unused pa-
rameter, incidentally the identifier of the template argument type is appeared
in the message.

C++ metaprogramming facilities are able to detect if the parameter types
of the operator () suit to the template arguments of the base class [22]. They
are not necessarily the same because references and constant references can be
used as functor arguments, but in this case no references or constant references
given as template arguments [14]. We can generate warnings with the previous
approach [25].

First, we present the framework for unary functors that checks if the base
type is proper for the operator():

template<bool b, class Fun>
struct __WARNING
{
__WARNING()
{
warning(IMPROPER_FUNCTOR_BASE());
}
};

template <class Fun>
struct __WARNING<true, Fun>
{

110 NORBERT PATAKI
};

template <class Fun>
class __check_unary_adaptability
{
typedef BOOST_TYPEOF (&Fun: :operator()) f_type;
typedef typename
boost::mpl::at_c<
boost::function_types: :parameter_types<f_type>, 1>::type
arg_type;

__WARNING< boost::is_same<
typename boost::remove_const<
typename boost::remove_reference<arg_type>::type>::type,
typename Fun::argument_type>::value, Fun > w;

};

#define CHECK_UNARY_FUNCTOR(F) __check_unary_adaptability<F>();

The utility class template __WARNING takes a compile-time boolean pa-
rameter, and if value of this parameter is true __WARNING does not generate
warning. Otherwise it instantiates the warning generator function template,
thus programmer gets a compilation warning. It is also takes the type of the
functor to be presented in the generated error warning. The core class tem-
plate is __check unary_adaptability which extracts the type of parameter
of the functor’s operator () and named as arg_type [13]. It also retrieves the
functor’s inner typedef called argument_type which set by unary function.
Set type is template argument of unary function. After that, it passes the
condition of the two types are proper to the __WARNING. The proper parame-
ter type means, that we should remove the const and & modifiers from the
declaration of the parameter of operator (). Unfortunately, we have to start
the verification manually, therefore a comfortable macro is present.

The following code snippets aims at the verification of binary functors:

template <class Fun>
class __check_binary_adaptability
{
typedef BOOST_TYPEOF (&Fun: :operator()) f_type;

typedef typename
boost::mpl::at_c<

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 111

boost::function_types: :parameter_types<f_type>, 1>::type
argl_type;

typedef typename
boost::mpl::at_c<
boost::function_types: :parameter_types<f_type>, 2>::type
arg2_type;

__WARNING< boost::is_same<
typename boost::remove_const<
typename boost::remove_reference<argl_type>::type>::type,
typename Fun::first_argument_type>::value, Fun > wil;

__WARNING< boost::is_same<
typename boost::remove_const<
typename boost::remove_reference<arg2_type>::type>::type,
typename Fun::second_argument_type>::value, Fun > w2;

};

#define CHECK_BINARY_FUNCTOR(F) __check_binary_adaptability<F>();

This class template is similar to the previous one, but this one uses
first_argument_type and second_argument_type set by binary _function.

With our framework adaptable functors can be written safer because if the
base class does not suit to the definition of operator () compilation warning
is generated. The only limitation is the user of the framework has to start the
verification manually. Our future work is to eliminate this limitation.

5. CONCLUSION

STL is widely-used standard C++ library based on the generic program-
ming paradigm. STL increases efficacy of C++4 programmers mightily be-
cause it consists of expedient containers and algorithms. On the other hand,
improper application of the library results in undefined or strange behaviour.

Functors play an important role in the STL because they enable to execute
user-defined code snippets in the library without significant overhead.

In this paper we detail a typical approach that results in a quite incompre-
hensible behaviour based on the functors’ requirements. We show the back-
ground of the problem and argue for a non-intrusive approach as a plausible
solution. Our solution has minimal overhead at runtime, but makes the usage
of functors much safer.

112

NORBERT PATAKI

Our framework also includes utilities that make the development of adapt-

able functors safer. Our approach is able to detect if the base class of the
functor does not suit the functor at compilation time. Compilation warning
is emitted, if a mistake is detected.

ACKNOWLEDGEMENT

This research is supported by the European Union and co-financed by the

European Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-
2010-0003).

(1]
2]

3]
[4]

[10]

[11]

[12]

[13]

[14]
[15]

REFERENCES

A. Alexandrescu, Modern C++ Design, Addison-Wesley, 2001.

ANSI/ISO C++ Committee. Programming Languages — C++. ISO/IEC 14882:1998(E).
American National Standards Institute, 1998.

M. H. Austern, Generic Programming and the STL: Using and Extending the C++
Standard Template Library, Addison-Wesley, 1998.

M. H. Austern, R. A. Towle, A. A. Stepanov, Range partition adaptors: a mechanism
for parallelizing STL, in ACM SIGAPP Applied Computing Review 1996 4(1), pp. 5-6,
T. Becker, STL & generic programming: writing your own iterators, C/C++ Users
Journal 2001 19(8), pp. 51-57.

M. Biczé, K. Pécza, Z. Porkolab, 1. Forgéacs, A new concept of effective regression test
generation in a C++ specific environment, In Acta Cybern., 18 (2008), pp. 481-512.
K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools and Appli-
cations, Addison-Wesley, 2000.

G. Dévai, N. Pataki, A tool for formally specifying the C++ Standard Template Library,
In Ann. Univ. Sci. Budapest., Comput. 31, pp. 147-166.

G. Dévai, N. Pataki, Towards verified usage of the C++ Standard Template Library, In
Proc. of The 10th Symposium on Programming Languages and Software Tools (SPLST)
2007, pp. 360-371.

D. Gregor, S. Schupp, Stllint: lifting static checking from languages to libraries, Software
- Practice & Experience, 36(3) (2006) 225-254.

D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, A. Lumsdaine, Concepts:
linguistic support for generic programming in C++, in Proc. of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and appli-
cations (OOPSLA 2006), pp. 291-310.

J. Jarvi, D. Gregor, J. Willcock, A. Lumsdaine, J. Siek, Algorithm specialization in
generic programming: challenges of constrained generics in C++, in Proc. of the
2006 ACM SIGPLAN conference on Programming language design and implementa-
tion (PLDI 2006), pp. 272-282.

B. Karlsson: Beyond the C++ Standard Library: An Introduction to Boost, Addison-
Wesley, 2005.

S. Meyers, Effective STL, Addison-Wesley, 2003.

D. R. Musser, A. A. Stepanov, Generic Programming, in Proc. of the International Sym-
posium ISSAC’88 on Symbolic and Algebraic Computation, Lecture Notes in Comput.
Sci., 358 1988, pp. 13-25.

[16]
[17]

18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

ADVANCED FUNCTOR FRAMEWORK FOR C++ STL 113

N. Pataki, C++ Standard Template Library by Safe Functors, in Proc. of The 8-th Joint
Conference on Mathematics and Computer Science, Selected Papers, pp. 357-368.

N. Pataki, Testing by C++ Template Metaprograms, in Acta Univ. Sapientiae, Inform.,
2(2), pp. 154-167.

N. Pataki, Z. Porkoldb, Z. Istenes, Towards Soundness Examination of the C++ Stan-
dard Template Library, In Proc. of Electronic Computers and Informatics, ECI 2006,
pp. 186-191.

N. Pataki, Z. Szigyi, G. Dévai, C++ Standard Template Library in a Safer Way, In
Proc. of Workshop on Generative Technologies 2010 (WGT 2010), pp. 46-55.

P. Pirkelbauer, S. Parent, M. Marcus, B. Stroustrup, Runtime Concepts for the C++
Standard Template Library, In Proc. of the 2008 ACM Symposium on Applied Com-
puting, pp. 171-177.

D. Rayside, Z. Benjamin, R. Singh, J. P. Near, A. Milicevic, D. Jackson, Fquality and
hashing for (almost) free: Generating implementations from abstraction functions, In
Proceedings of the 31st IEEE International Conference on Software Engineering (ICSE
2009) pp. 342-352.

Z. Porkoldb, Functional Programming with C++ Template Metaprograms in Proc. of
Central European Functional Programming School, Revised Selected Lectures, Lecture
Notes in Comput. Sci., 6299, pp. 306-353.

Z. Porkolab, A. Sipos, N. Pataki, Inconsistencies of Metrics in C++ Standard Template
Library, In Proc. of 11th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering QAOOSE Workshop, ECOOP 2007, Berlin, pp. 2—-6.

B. Stroustrup, The C++ Programming Language - Special Edition, Addison-Wesley,
2000.

Z. Szigyi, A. Sinkovics, N. Pataki, Z. Porkoldb, C++ Metastring Library and its Ap-
plications, In Proc. of Generative and Transformational Techniques in Software Engi-
neering 2009, Lecture Notes in Comput. Sci., 6491, pp. 461-480.

M. Torgersen, The Expression Problem Revisited — Four New Solutions Using Generics,
in Proc. of European Conference on Object-Oriented Programming (ECOOP) 2004,
Lecture Notes in Comput. Sci., 3086, pp. 123-143.

L. Zolman, An STL message decryptor for visual C++, In C/C++ Users Journal, 2001
19(7), pp. 24-30.

1. Z6lyomi, Z. Porkolab, Towards a General Template Introspection Library, in Proc. of
Generative Programming and Component Engineering: Third International Conference
(GPCE 2004), Lecture Notes in Comput. Sci., 3286, pp. 266—282.

DEpPT. OF PROGRAMMING LANGUAGES AND COMPILERS, FAC. OF INFORMATICS,

EOTVOs LORAND UNIVERSITY, PAZMANY PETER SETANY 1/C, H-1117 BupapesT, HUN-
GARY

FE-mail address: patakino@elte.hu

