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Abstract. Complex systems and their important principles of emergence,
auto-organization and adaptability are being intensively studied by re-
searchers in a variety of fields including physics, biology, computer science,
sociology and economics. The aim of this paper is to highlight potential
interesting research directions lying at the intersection of nature-inspired
computing and complex systems and able to generate new insights on mod-
elling complexity. The field of evolutionary computation comprises classes
of nature inspired search, design and optimization methods that can be
applied to a variety of complex problems. Complex systems and relevant
evolutionary computation methods are reviewed and analysed in this pa-
per. Several aspects relating evolutionary computation to emergent and
self-organization phenomena are emphasized.

1. Introduction

A complex system is any system containing a large number of interact-
ing entities (agents, processes, etc.) which are interdependent. The system
behaviour cannot be identified by considering each individual entity and com-
bining them, but considering how the relationships between entities affect
the behaviour of the whole system. The main features of complex systems
include emergence, self-organization, evolution and adaptability. Emergence
occurs when the behaviour of a system cannot be reduced to the sum of the
behaviour of the parts. Self-organization is the process by which elements
interact to create spatio-temporal patterns of behaviour that are not directly
imposed by external forces. The formation of complex systems, and the struc-
tural/functional change of such systems, is a process of adaptation. Evolution
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is the adaptation of populations through inter-generation changes in the com-
position of the population. Learning is a similar process of adaptation of a
system through changes in its internal patterns. An extensive study of complex
systems and cellular automata as important tools in the analysis of complex
interactions and emergent systems has been presented in [17].

The development of complex organizations, structures and mechanisms
found in nature are explained by Charles Darwin’s theory of evolution [19], one
of the greatest scientific achievements of all times. This powerful evolutionary
paradigm stands behind a class of nature inspired optimization methods, called
Evolutionary Computation (EC). Some optimization methods belonging to the
EC class share more than the basic principles and operators [39]. Certain high-
level phenomena like the Baldwin effect [38, 65, 73, 71, 5, 28], coevolution and
arm races [64, 61, 11, 72, 31], parasitism [56, 63], exaptation [24, 33, 35] and
speciation [60] are found in methods and models belonging to EC.

Daniel Dennett has underlined that, “evolution will occur whenever and
wherever three conditions are met: replication, variation (mutation), and dif-
ferential fitness (competition)” [26], thus the digital transference of the nat-
ural selection paradigm must be also capable of producing self-organization
and adaptability. Several such examples are reviewed in this paper based on a
broad analysis of complex systems, EC major areas of interest and important
aspects that connect emergent self-organizing phenomena with evolutionary
computation. The main emerging research areas are discussed and potential
interesting directions able to generate new insights on modelling complexity
are emphasized.

The paper is organized as follows: Section 2 presents evolutionary tech-
niques as tools for obtaining complex behaviours; Section 3 describes how EC
can be used to evolve irreducible complexity; Section 4 presents the significant
role that EC plays in many aspects of the Artificial Life domain; Section 5
shows that evolutionary techniques can be applied for automating the design
of heuristic search methods and Section 6 contains conclusions and further
research directions.

2. Evolving complex behaviours

Inspired by the richness and robustness of behavioural complexity exhib-
ited by living organisms, EC has been used to tackle a broad variety of prob-
lems regarding the development of desired behaviours or strategies. Indeed,
truly emergent phenomena are those that cannot be controlled or foreseen.
Their effect - beneficial or destructive - will only appear during or after the
interaction of the components takes place. Therefore, the task of designing
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a system presenting desired emergent behaviour or the task of avoiding un-
desired emergent behaviour becomes complex and challenging [9]. Since it is
by definition impossible to know how design choices made on the component
level affect the overall system behaviour such tasks may be realized only by
means of computational extensive and expensive simulations. This kind of
simulations can be approached by evolutionary computation tools.

There are several characteristics of Evolutionary Algorithms (EAs) that
make them suitable for dealing with the challenges mentioned above:

• EAs are black box optimization heuristics, they do not impose any
restrictions on the fitness function and thus can be used in a complex
simulation environment;

• EAs can be efficiently parallelized, even on heterogeneous hardware
platforms like computer grids [1];

• Approximation methods for fitness evaluation can significantly reduce
the computational complexity of the simulation;

• EAs are known to be able to cope well with uncertainty in evaluation
and capable to adapt to changing environments [7];

• The well established field of Evolutionary Multiobjective Optimization
provides a range of methods and tools for dealing with multiple ob-
jectives which is a realistic approach in studying complex systems and
possible emergent behaviour [23];

• EAs are highly adaptable to different solution concepts - using gen-
erative relations such as Pareto dominance or Nash ascendancy can
lead to different types of solutions - the Pareto frontier or the Nash
equilibria of a game respectively [29];

• EAs are known to be adaptive but they can be also interactive - both
features making them useful in studying or designing possible emergent
behaviour.

EAs have been successfully used in designing complex systems and in-
ducing desired emergent behaviour. One example is the problem of designing
en-route caching strategies [8] where genetic programming is engaged to design
effective caching strategies. An EA was used with traffic simulation to design
a traffic light controller in a multi-objective setting, attempting to minimize
travel time as well as the number of stops.

Chellapilla and Fogel [16] used a genetic algorithm (GA) to evolve neu-
ral networks that could play the game of checkers. The major breakthrough
of the paper is represented by the fact that a competitive strategy could be
evolved given only the spatial positions of pieces on the checkerboard and the
piece differential. The GA optimized artificial neural networks to evaluate
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alternative positions in the game without relying on any specific credit assign-
ment algorithm - a rewarding mechanism that would normally require human
expertise.

Evolutionary search has been applied to develop strategies for many dif-
ferent games like Othello [52] or GO [62]. However, these results suggest that
the evolutionary principles may be successfully applied also to problems that
have not yet been solved by human expertise.

Evolutionary methods were also successfully applied by Andre and Teller
to develop a program for controlling a team of robot soccer players [4]. They
used a genetic programming algorithm which operated with a set of primitive
control functions such as turning, moving and kicking. The fitness function
rewarded good play in general, rather than scoring specific tasks. No code
or elementary building block was provided to teach the team how to achieve
complex objectives, like ball tracing, kicking the ball in the correct direc-
tion, keeping the ball on the opponent’s side, goal scoring etc. The robot
team, called Darwin United, entered the international RoboCup1 tournament,
an annual soccer tournament between teams of autonomous robots. Darwin
United performed quite well, outranking half of the human-written, highly
specialized entries.

Cellular Automata (CA) are decentralized structures of simple and locally
interacting elements (cells) that evolve following a set of rules [74]. Program-
ming CA is not an easy task, especially when the desired computation requires
global coordination. CA provides an idealized environment for studying how
(simulated) evolution can develop systems characterized by “emergent compu-
tation” where a global, coordinated behaviour results from the local interaction
of simple components [49].

The most widely studied CA task is the density classification problem
(DCT) [48]. The task refers to finding the density most present in the initial
cellular state. Packard [57] made the first attempts to use genetic algorithms
for finding CA rules for the density task. Genetic programming [41], coevo-
lutionary learning [40] and gene expression programming [30] have also been
engaged for this problem. Genetic algorithms for computational emergence in
the density classification task have been extensively investigated by Mitchell
et al [20, 49, 50, 58]. The human designed Gacs-Kurdyumov-Levin rule with
a performance of 81.6% as all other known subsequent human-written rules
for this problem, were surpassed by rules developed by simulated evolution.
Andre et al. [3] found a rule performing with an 82.23% accuracy by using
genetic programming. The best currently reported DCT rule has a perfor-
mance of 89% [54], which was evolved by a two-tier evolutionary algorithm.

1http://www.robocup.org/
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The potential of evolutionary models to efficiently approach the problem of
detecting CA rules to facilitate a certain global behaviour is also confirmed by
other current research results [46, 77, 32, 25].

Another CA computational task intensely studied is the synchronization
task (ST) [21], where the goal is to find 1D binary CA able to reach a config-
uration that cycles from all cells 0 in one time step to all cells 1 in next time
step (starting from an arbitrary initial configuration). Evolutionary models
have been successfully engaged for the synchronization task in several studies
[21, 46]. There are several one-dimensional radius-3 CA rules able to solve ST
for any arbitrary lattice configuration [21] with an efficacity of approximately
95%. Genetic algorithms proposed in [53, 46] for the synchronization task are
able to find radius-2 rules with high efficacy.

Research has also been focused on evolving behaviours in multidimensional
CA. Morales et al. [51], Alonso and Bull [2] have studied the DCT in a two
dimensional setting. In [10] the authors use GA to evolve behaviour in multidi-
mensional CA for DCT, the checkerboard problem that requires the formation
of an alternating simple pattern and finally for generic bitmap evolution. The
authors found that symmetrical bitmaps seem to be easier to generate than
asymmetric ones and that multidimensional CA can solve certain problems
faster than one dimensional CA. Chavoya and Duthen successfully evolve CA
to produce predefined 2D and 3D shapes [14]. In a later work they apply a
GA to evolve an extended artificial regulatory network to produce predefined
2D cell patterns [15].

The evolutionary discovery of rules that produce global synchronization is
significant, since these exemplify the automated development of sophisticated
emergent computation in decentralized, distributed systems such as CA. These
discoveries are encouraging for the prospect of using EC to automatically
evolve behaviour for more complex tasks, like predicting chaotic sequences.

3. Evolving irreducible complexity

An important challenge to evolutionary theory is to explain the origin and
development of complex organismal features. Michael Behe, the originator of
the term irreducible complexity (IC), defines an IC system as one “composed
of several well-matched, interacting parts that contribute to the basic function,
wherein the removal of any one of the parts causes the system to effectively
cease functioning” [6]. IC is a central argument for proponents of intelligent
design, revolving around the belief that such systems demonstrate that modern
biological forms could not have evolved naturally.

Evolutionary biologists have shown that through evolutionary mechanism
like deletion or addition or multiple parts, change of function or addition of
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second function to a part, gradual modification and loss of previously existing
scaffolding can contribute to the production of IC systems.

In [34] the authors use a simple GA with variable-length chromosomes over
a dynamic fitness function, in order to demonstrate that GAs can produce sys-
tems composed of multiple parts contributing to a specified complex function,
where all components are critical. Therefore, such a design is irreducible.

The problem to be solved by the GA is a game defined over a 30 × 14
board, where the goal is to attain fitness scores greater than zero. As better
solutions are evolved, the game responds by becoming more and more difficult.

By default, each grid cell in the game board is blank. The genes of indi-
viduals code mappings onto the game board; the encoded game cells, called
“boxes” have one of four types, designated by the letters S,A,L,R. As the game
begins, a virtual ball falls through the board, entering at the column index 5,
carrying an initial point value of 15. The four box types can modify this value
and the direction of travel through the board and can also duplicate the ball.
The goal of the game is to multiply game balls and steer them to the sink
column, with index 8. Game balls that exit the board on different columns do
not affect the fitness score.

The effect of the four box types is the following:

(1) The Split box (S-box) duplicates the game ball, each with a point value
one less than the original and with a different exit path from the box.

(2) The Add box (A-box) increases the point value of a game ball passing
through it.

(3) The Left boxes (L-boxes) and Right boxes (R-boxes) modify the ball’s
direction of travel (right and left turn).

The fitness score of an individual x is defined as:

(1) f(x) = max(0, p(x)− l(x) · P )

where p(x) is the number of collected points, l(x) is the chromosome length,
and P is a population-wide penalty value which increases with time to make
the game more difficult as the individuals evolve. Individuals with fitness
zero are considered non-viable, and they do not participate in the tournament
selection employed by the GA.

Graham et al. [34] conducted experiments to verify if a GA can construct
irreducible complex solutions to this game. An individual was regarded irre-
ducible complex if its fitness was greater than zero, it contained more then
five boxes (simple solutions were not of interest) and the removal of any single
part (box) from the phenotype resulted in the fitness of the individual drop-
ping to zero. With small population sizes of 50 individuals, they were able
to constantly evolve irreducible solutions to this game. Such a highly-evolved
solution is depicted in Fig. 1.
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Add Box
Left Box
Split Box
Right Box

Figure 1. An example of a highly-evolved individual as re-
ported in [34]. It can sustain a penalty of P ∼= 1.1 × 1012 and
collects approximately 3.6× 1013 points.

The game solution strategies found by the GA are variations of the general
pattern observable in Fig. 1. The source and sink column is connected with a
cluster of A and S-boxes that multiply the game balls and increase their point
value. Each side of the cluster if braced by L and R-boxes, that route the balls
back into the cluster and towards the sink column.

The work2 has demonstrated with the help of a simulated environment that
simple evolutionary mechanisms can produce irreducible complexity, consist-
ing of more than 100 parts.

In [18], Clayton depicts how IC systems can be obtained in a simple system
that operates on a regular two-dimensional triangular lattice. The nodes in
the considered lattice are binary. Whenever two adjacent nodes are set to the
value 1 or ON, an edge automatically connects them. A group of connected
nodes forms a system which is considered viable if and only if it forms a
closed geometric shape and its fitness is directly proportional with its perimeter
(larger systems are preferred). Through a simulated evolution, the author
demonstrates that irreducible complexity evolves in this model in response to
natural selection, favoring the larger systems with fewer parts. A continual
increase in complexity was observed in 100 evolutionary steps, resulting in IC
systems containing between 6 and 30 parts.

GAs are also used to address the watchmaker analogy, which affirms that
the highly complex inner workings of a system (ex. watch) necessitate an
intelligent designer. The experiment3 demonstrates that if the components of
a watch are allowed to be combined and the resulting design undergoes natural
selection, a functional watch can be evolved. The clocks evolve through a
series of transitional forms, with ever increasing complexity. At initialization,

2An online demonstration of the game and algorithm can be found at http://www.

stellaralchemy.com/ice/index.php.
3http://richarddawkins.net/videos/1322-evolution-is-a-blind-watchmaker
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98% of the designs are non functional, the remaining designs being simple
pendulums. As they evolve, proto-clocks, more sophisticated clocks gradually
develop, starting from 1 hand and resulting in up to 4 hands. The most
sophisticated clock obtained had 21 interacting parts.

4. Evolving digital organisms and ecosystems

Natural evolution as well as its simulated variant can produce complex
system configurations and behaviours. Therefore, EC plays a significant role
in many aspects of the Artificial Life (AL) domain as behaviour strategies,
methods of communication, swarm intelligence and many other topics are
commonly explored using evolutionary search techniques (see the “From An-
imals to Animats” or “Artificial Life” conference series). Furthermore, the
dynamics of Darwinian evolution and different hypotheses and models of evo-
lution are often studied through digital organisms - artificial life-forms, that
are defined as self-replicating digital models that mutate, compete and evolve.

One of the first experiments with digital organisms was conducted by ecol-
ogist Thomas S. Ray in the Tierra model [69], where computer programs
capable of mutation and self-replication compete for central processing unit
time (energy) and access to main memory (resources). The model has been
used to conduct experiments regarding evolutionary and ecological dynam-
ics, including dynamics of punctuated equilibrium, host-parasite coevolution
and density-dependent natural selection. In the Tierra framework the fitness
function is endogenous; there is simply survival or death of a digital organism.

A related framework, AVIDA, where each digital organism lives in its own
protected region of memory and is executed by its dedicated virtual CPU,
was used to conduct research in the digital evolution of complex features [43].
The digital organisms evolve to perform certain computational tasks, from
which the most complicated one is the equality operator - requiring at least
19 simpler, precisely ordered instructions.

Other noteworthy examples of digital organism simulators include:

(1) Evolve 4.0 4 a 2D cellular automata where each cell can behave in-
dependently as unicellular organism or be a part of a multicellular
creature. The digital organisms can grow, movie, feed and replicate.

(2) Darwinbots 5, a digital environment of interacting and fighting bots,
where the behaviour of the bots is specified by their genome.

(3) breve6, a 3D simulator for multi-agent systems and artificial life, with
support for physical simulation and collision detection.

4http://stauffercom.com/evolve4/
5http://www.darwinbots.com/WikiManual/index.php?title=Main_Page
6http://www.spiderland.org/breve/
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(4) Polyworld 7, an ecosystem of agents which search for food, mate, repli-
cate and hunt. The individuals actions are governed by arbitrary ar-
chitecture neural networks employing Hebbian learning. The neural
network is encoded in each individual’s genome that is mutated and
replicated. Recent results [75] experimenting with Polyworld had un-
derlined an association between small-world network structures of the
controlling networks and complex neural dynamics.

(5) AnimatLab8, is a recently developed simulation tool combining biome-
chanical simulation and biologically realistic (spiking) neural networks.

Lohn’s CA, evolved by a GA to be capable of self-replication [45] and
the plant-like biomorphs introduced by Dawkins [22] are another examples of
evolutionary AL-forms.

Sims [67, 66] demonstrates the development of animal-like morphologies
by simulating Darwinian evolutions of virtual block creatures. The fitness of
the initially randomly generated block creatures is measured in their ability to
perform a given task, for example swimming in a simulated water environment.
The creatures undergoing natural selection and variation developed success-
ful behaviours for swimming, walking, jumping, following, and competing for
control of a (resource) cube.

5. Self-* search

Emergent phenomena observed in natural systems have been used as an
inspiration for designing many evolutionary computation models. For ex-
ample Ant colony optimization (ACO) [27] or Particle Swarm Optimization
(PSO) [55] methods mimic emergent features mentioned above to solve com-
plex search and optimization problems. Emergent phenomena are carefully
observed and used as an inspiration for designing new efficient techniques.

Nevertheless, as evolutionary search is capable of producing highly coad-
apted complex systems that are often irreducible, there is a growing research
interest in evolutionary techniques for automating the (self) design of heuristic
search methods. Successful approaches alleviate the need for human experts
in the process of designing efficient problem dependent optimization methods
(heuristics).

There are two basic approaches to turn simpler methods into self-* algo-
rithms or hyperheuristics: one is built upon machine learning techniques to
identify good parameter settings, proper operators and algorithmic building
blocks; the second one uses a meta-level search over the parameterization of
the base method, where the selection of the good features can be decided in a

7http://beanblossom.in.us/larryy/Polyworld.html
8http://www.animatlab.com/
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fast greedy way, susceptible of finding (weak) local-optima or by a computa-
tionally more expensive evolutionary means.

Regardless of the machine-learning or meta-search based approach, related
self-adaptive and meta-level methods revolve around three general processes
in automated heuristic design:

(1) Adjusting or tuning the method’s control parameters, an approach
exemplified by adaptive self-tuning Evolution Strategies [36] or auto-
matically selected perturbation step size in Iterated Local Search [68].

(2) Dynamic selection of existing algorithmic components, ex. managing
the search operators in an EC algorithm [47] or the application of
various linkage learning techniques for developing competent crossover
operators [37, 59, 76, 44].

(3) Generating new heuristics from basic sub-components, an approach
implemented by the “Teacher”9 framework [70].

The literature regarding this field is immense and it can not be covered in
this review. For a more in depth discussion, we forward the interested reader
to recent reviews on this subject [42, 13, 12].

However, we would like to point out that the evolutionary paradigm can
be recursively applied to enhance EC methods. Self-adaptation is an implicit
parameter adaptation technique enabling the evolutionary search to tune the
strategy parameters automatically by evolution [42].

6. Conclusions

Evolutionary computation techniques have been successfully applied for
problems that arise from the study of complex systems principles of emergence,
auto-organization and adaptability.

A two way relationship between the two domains can be observed. On
the one hand, their interaction gave rise to new efficient optimization tech-
niques inspired by emergent phenomena and helped improving different heuris-
tic methods in terms of tuning control parameters or dynamic selection of
components. On the other hand, evolutionary techniques have been used for
designing complex systems. For example, complex desired behaviours and
strategies have been evolved by means of evolutionary techniques. Cellular
automata is a great example of global, coordinated behaviour that results
from the local interaction of simple components. Several other examples in-
clude caching strategies, traffic controllers, strategies for difficult games etc.
Another major application of EC is the production of irreducibly complex sys-
tems characterized by the fact that removing any of the systems parts causes
the system to cease functioning. We also present the role that EC has in

9An acronym for TEchniques for the Automated Creation of HEuRistics
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the Artificial Life domain, for aspects like behaviour strategies, methods of
communication, swarm intelligence and many other topics.

There are many research perspectives at the intersection of nature-inspired
computing and complex systems worth to be further explored. We emphasize
the potential of computer simulations using multi-agent modelling and evo-
lutionary computing techniques and investiging complex network and cellular
automata models for the analysis of complex systems. Different interaction
models at the micro/macro (inidividual/population) level that induce emer-
gent behavior can be studied using evolutionary computation and further ex-
plored in modelling complex systems.
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[10] R. Breukelaar, Th. Bäck, Using a genetic algorithm to evolve behaviour in multi dimen-
sional cellular automata: emergence of behaviour, In Proceedings of the 2005 conference
on Genetic and evolutionary computation, GECCO ’05, New York, NY, USA (2005),
pp. 107-114.



COMPLEX SYSTEMS 95

[11] A. Bucci, J.B. Pollack, On identifying global optima in cooperative coevolution, In Pro-
ceedings of the 2005 conference on Genetic and evolutionary computation, GECCO ’05,
New York, NY, USA (2005), pp. 539-544.

[12] E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu, A survey of hyper-
heuristics, Technical Report NOTTCS-TR-SUB-0906241418-2747, School of Computer
Science and Information Technology, University of Nottingham (2010).

[13] K. Chakhlevitch and P. Cowling, Hyperheuristics: recent developments, Adaptive and
Multilevel Metaheuristics (2008), pp. 3-29.

[14] A. Chavoya, Y. Duthen, Using a genetic algorithm to evolve cellular automata for 2d/3d
computational development, In Proceedings of the 8th annual conference on Genetic and
evolutionary computation, GECCO ’06, New York, NY, USA (2006), pp. 231-232.

[15] A. Chavoya, Y. Duthen, Use of a genetic algorithm to evolve an extended artificial reg-
ulatory network for cell pattern generation, In Proceedings of the 9th annual conference
on Genetic and evolutionary computation, GECCO ’07, New York, NY, USA (2007),
pp. 1062-1062.

[16] K. Chellapilla, D.B. Fogel, Evolving an expert checkers playing program without using
human expertise, IEEE Transactions on Evolutionary Computation, 5:4 (2001), pp.
422-428.

[17] C. Chira, A. Gog, R. Lung, D. Iclanzan, Complex Systems and Cellular Automata
Models in the Study of Complexity, Studia Informatica series, Vol. LV, No. 4 (2010), pp.
33-49.

[18] S.S. Clayton, A simple model for the evolution of irreducible complexity, Citeseer DOI
10.1.1.60.6797 (2006).

[19] C. Darwin, On the Origin of Species, John Murray, London, 1859.
[20] R. Das, M. Mitchell, J. P. Crutchfield, A genetic algorithm discovers particle-based

computation in cellular automata, Parallel Problem Solving from Nature Conference
(PPSN-III). Springer-Verlag (1994), pp. 344-353.

[21] R. Das, J.P. Crutchfield, M. Mitchell, J.E. Hanson, Evolving globally synchronized cellu-
lar automata, In Proceedings of the 6th International Conference on Genetic Algorithms,
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc (1995), pp. 336-343.

[22] R. Dawkins, The Blind Watchmaker, Penguin Books, 1986.
[23] K. Deb, D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms,

John Wiley & Sons, Inc., New York, NY, USA, (2001).
[24] P. de Oliveira, Simulation of exaptive behaviour, In Yuval Davidor, Hans-Paul Schwefel,

and Reinhard Mnner, editors, Parallel Problem Solving from Nature - PPSN III, LNCS
vol. 866, Springer Berlin / Heidelberg (1994), pp. 354-364.

[25] P.P.B. de Oliveira, J.C. Bortot, G. Oliveira, The best currently known class of dy-
namically equivalent cellular automata rules for density classification, Neurocomputing,
70:1-3 (2006), pp. 35-43.

[26] DC Dennett, The new replicators, The encyclopedia of evolution, 1 (2002), pp. 83-92.
[27] M. Dorigo, T. Stutzle, Ant Colony Optimization, Bradford Company, Scituate, MA,

USA (2004).
[28] K.L. Downing, The baldwin effect in developing neural networks, In Proceedings of the

12th annual conference on Genetic and evolutionary computation, GECCO ’10, New
York, NY, USA (2010), pp. 555-562.

[29] D. Dumitrescu, R.I. Lung, T.D. Mihoc, Generative relations for evolutionary equilibria
detection, In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, GECCO ’09, New York, NY, USA (2009), pp. 1507-1512.
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